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1 Getting Started

Vehicle Dynamics Blockset Product Description

1-2

Model and simulate vehicle dynamics in a virtual 3D environment

Vehicle Dynamics Blockset™ provides fully assembled reference application models that simulate
driving maneuvers in a 3D environment. You can use the prebuilt scenes to visualize roads, traffic
signs, trees, buildings, and other objects around the vehicle. You can customize the reference models
by using your own data or by replacing a subsystem with your own model. The blockset includes a

library of components for modeling propulsion, steering, suspension, vehicle bodies, brakes, and
tires.

Vehicle Dynamics Blockset provides a standard model architecture that can be used throughout the
development process. It supports ride and handling analyses, chassis controls development, software
integration testing, and hardware-in-the-loop testing. By integrating vehicle dynamics models with a
3D environment, you can test ADAS and automated driving perception, planning, and control
software. These models let you test your vehicle with standard driving maneuvers such as a double
lane change or with your own custom scenarios.

Key Features

* Preassembled vehicle dynamics models for passenger cars and trucks

* Preassembled maneuvers for common ride and handling tests, including a double-lane change
+ 3D environment for visualizing simulations and communicating scene information to Simulink®
» Libraries of propulsion, steering, suspension, vehicle body, brake, and tire components

* Combined longitudinal and lateral slip dynamic tire models

* Predictive driver model for generating steering commands that track a predefined path

* Prebuilt 3D scenes, including straight roads, curved roads, and parking lots
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1 Getting Started

Required and Recommended Products

Required Products

Vehicle Dynamics Blockset product requires current versions of these products:

« MATLAB
e Simulink

Recommended Products

You can extend the capabilities of the Vehicle Dynamics Blockset using the following recommended

products.
Goal Recommended Products
Model events Stateflow®

Test closed-loop perception, planning, |Automated Driving Toolbox™
and control algorithms

Test vehicle-level integration Powertrain Blockset™

Optimize vehicle energy consumption,

ride and handling
Generate optimized suspension Model-Based Calibration Toolbox™
parameters
Simscape™ Multibody™
See Also
More About
. “3D Visualization Engine Requirements and Limitations” on page 8-6
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Engine Calibration Maps

Engine Calibration Maps

Calibration maps are a key part of the Mapped CI Engine and Mapped SI Engine blocks available in
the Vehicle Dynamics Blockset. Engine models use the maps to represent engine behavior and to
store optimal control parameters. Using calibration maps in control design leads to flexible, efficient
control algorithms and estimators that are suitable for electronic control unit (ECU) implementation.

To develop the calibration maps for engine plant models in the reference applications, MathWorks®
developed and used processes to measure performance data from 1.5-L spark-ignition (SI) and
compression-ignition (CI) engine models provided by Gamma Technologies LLC.

To represent the behavior of engine plants specific to your application, you can develop your own
engine calibration maps. The data required for calibration typically comes from engine dynamometer
tests or engine hardware design models.

Engine Plant Calibration Maps

The engine plant model calibration maps in the Mapped CI Engine and Mapped SI Engine blocks
affect the engine response to control inputs (for example, spark timing, throttle position, and cam
phasing).

To develop the calibration maps in the engine plant models, MathWorks used GT-POWER models from
the GT-SUITE modeling library in a Simulink-based virtual dynamometer. MathWorks used the Model-
Based Calibration Toolbox to create design-of-experiment (DoE) test plans. The Simulink-based virtual
dynamometer executed the DoE test plan on GT-POWER 1.5-L SI and CI reference engines.
MathWorks used the Model-Based Calibration Toolbox to develop the engine plant model calibration
maps from the GT-POWER.

Calibration Maps in the Mapped Cl Engine Block

The Mapped CI Engine block implements these calibration maps.

1-5
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1 Getting Started

fuel mass and
engine speed

Map Used For In Description
Engine brake |Engine brake |Mapped CI |The engine brake torque lookup table is a function of
torque torque as a Engine commanded fuel mass and engine speed, Ty qke = f(F,
function of N), where:
commanded
fuel mass and *  Tprake is engine torque, in N-m.
engine speed + Fis commanded fuel mass, in mg per injection.
* N is engine speed, in rpm.
£
Engine Speed (RPM) 0 o 0
Commanded Fuel (mg/inj)
Engine air Engine air mass [Mapped CI |The air mass flow lookup table is a function of
mass flow flow as a Engine commanded fuel mass and engine speed, Mjyk =
function of f(Fpax, N), where:
commanded

*  Minek is engine air mass flow, in kg/s.

Fra is commanded fuel mass, in mg per injection.

N is engine speed, in rpm.
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Engine Calibration Maps

Map Used For In Description
Engine fuel |Engine fuel flow [Mapped CI |The engine fuel flow lookup table is a function of
flow as a function of |Engine commanded fuel mass and engine speed, MassFlow=
commanded f(F, N), where:
fuel mass and _ . .
engine speed * MassFlow is engine fuel mass flow, in kg/s.
* Fis commanded fuel mass, in mg per injection.
* N is engine speed, in rpm.
0.01
¥ o.008
E‘DDDE
% 0.004
=
© 0.002
o
6000
2000 20
Engine Speed (RPM) 0 0 1o
Commanded Fuel (mg/inj)
Engine Engine exhaust |[Mapped CI |The engine exhaust temperature table is a function of
exhaust temperature as |Engine commanded fuel mass and engine speed, T,,= f(F, N),
temperature |a function of where:

commanded
fuel mass and
engine speed

o T..nis exhaust temperature, in K.
* Fis commanded fuel mass, in mg per injection.
* N s engine speed, in rpm.

1400

< 1200

=]
=]
=]

400

Exhaust Temperature

200
6000

2000 20

10
Engine Speed (RPM) 0 o

Commanded Fuel (mg/inj)
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1 Getting Started

Map Used For In Description
Brake-specific | BSFC efficiency |[Mapped CI |The brake-specific fuel consumption (BSFC) efficiency
fuel as a function of |Engine is a function of commanded fuel mass and engine
consumption |commanded speed, BSFC= f(F, N), where:
(BSFC) fuel mass and . '
efficiency engine speed * BSFCis BSFC, in g/kWh.

* Fis commanded fuel mass, in mg per injection.

* N is engine speed, in rpm.

Engine Speed (RPM) 0 g 10 v

Commanded Fuel (mg/inj)

Engine-out EO hydrocarbon |[Mapped CI |The engine-out hydrocarbon emissions are a function
(EO) emissions as a |Engine of commanded fuel mass and engine speed, EO HC=
hydrocarbon |function of f(F, N), where:
emissions commanded

fuel mass and
engine speed

* EO HC is engine-out hydrocarbon emissions, in
kg/s.

* Fis commanded fuel mass, in mg per injection.
* N is engine speed, in rpm.

%1078
5

EOQHC (kg/s)
MW

2000 20

10
Engine Speed (RPM) 0 o

Commanded Fuel (mgfinj)




Engine Calibration Maps

Map Used For In Description
Engine-out EO carbon Mapped CI |The engine-out carbon monoxide emissions are a
(EO) carbon |monoxide Engine function of commanded fuel mass and engine speed,
monoxide emissions as a EO CO= f(F, N), where:
emissions function of ) . ] o ]
commanded * EO CO is engine-out carbon monoxide emissions, in
fuel mass and kg/s.
engine speed * Fis commanded fuel mass, in mg per injection.
* N is engine speed, in rpm.
2000 20
Engine Speed (RPM) 0 9 0
Commanded Fuel (mgfinj)
Engine-out EO nitric oxide |Mapped CI |The engine-out nitric oxide and nitrogen dioxide
(EO) nitric and nitrogen Engine emissions are a function of commanded fuel mass and
oxide and dioxide engine speed, EO NOx= f(F, N), where:
nitrogen emissions as a ) ) o ) )
dioxide function of * EO NOx is engine-out nitric oxide and nitrogen

commanded
fuel mass and
engine speed

dioxide emissions, in kg/s.
* Fis commanded fuel mass, in mg per injection.
* N is engine speed, in rpm.

%1074
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10
Engine Speed (RPM) 0 o
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commanded
fuel mass and
engine speed

Map Used For In Description

Engine-out EO carbon Mapped CI |The engine-out carbon dioxide emissions are a

(EO) carbon |dioxide Engine function of commanded fuel mass and engine speed,
dioxide emissions as a EO CO2= f(F, N), where:

emissions function of

* EO COZ2 is engine-out carbon dioxide emissions, in

kg/s.
* Fis commanded fuel mass, in mg per injection.
* N is engine speed, in rpm.

EO CO2 (kgis)

6000
50

2000 20

10
Engine Speed (RPM) 0 o
Commanded Fuel (mg/inj)

Calibration Maps in the Mapped SI Engine Block

The Mapped SI Engine block implements these calibration maps.

engine speed

Map Used For In Description

Engine torque |[Engine brake = |Mapped SI |The engine torque lookup table is a function of
torque as a Engine commanded engine torque and engine speed, T =
function of f(Tyma, N), where:
commanded
torque and * Tis engine torque, in N-m.

* T, is commanded engine torque, in N-m.
* N is engine speed, in rpm.

N o= n
=] o =]
=] (=1 =]

Actual Torgue (Nm)
3

2000
50
Engine Speed (RPM) 0 o

Commanded Torque (Nm)
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Engine Calibration Maps

Map Used For In Description
Engine air Engine air mass [Mapped SI |The engine air mass flow lookup table is a function of
mass flow flow as a Engine commanded engine torque and engine speed, Mjpsk =
function of f(T.mg, N), where:
commanded
torque and *  Mintk iS engine air mass flow, in kg/s.
engine speed * T, is commanded engine torque, in N-m.
* N is engine speed, in rpm.
0.1
% 0.08
g 0.06
LL;'J 0.04
S
E 0.02
1]
6000
200
2000
50
Engine Speed (RPM) 0 o
Commanded Torgue (Nm)
Engine fuel |Engine fuel flow [Mapped SI |The engine fuel mass flow lookup table is a function of
flow as a function of |Engine commanded engine torque and engine speed,
commanded MassFlow = f(T,,g, N), where:
torque mass i ) )
and engine * MassFlow is engine fuel mass flow, in kg/s.
speed * T, is commanded engine torque, in N-m.

* N is engine speed, in rpm.

X
@ 2
la

@

Fuel Mass Flow (kg/s)
L -

=]
=]
=]
=3=}
¥

200

2000
50
Engine Speed (RPM) 0 o

Commanded Torgue (Nm)

1-11



1 Getting Started

1-12

Map Used For In Description
Engine Engine exhaust |Mapped SI |The engine exhaust temperature lookup table is a
exhaust temperature as |Engine function of commanded engine torque and engine
temperature |a function of speed, To = f(T;g, N), where:
commanded ) .
torque and * T, is exhaust temperature, in K.
engine speed * T.ngis commanded engine torque, in N-m.
* N s engine speed, in rpm.
1200
% 1100
% 1000
é 900
'.G:L: 800
.‘.':E 700
. 600
6000
200
2000
50
Engine Speed (RPM) 0 o
Commanded Torque (Nm)
Brake-specific | Brake-specific |Mapped SI |The brake-specific fuel consumption (BSFC) efficiency
fuel fuel Engine is a function of commanded engine torque and engine

consumption
(BSFC)
efficiency

consumption
(BSEC) as a
function of
commanded
torque and
engine speed

speed, BSFC = f(T,,q4, N), where:

* BSFC is BSFC, in g/kWh.
* T,ngis commanded engine torque, in N-m.
* N s engine speed, in rpm.

200

50
Engine Speed (RPM) 0 o

Commanded Torque (Nm)




Engine Calibration Maps

Map Used For In Description
Engine-out  |EO hydrocarbon |Mapped SI |The engine-out hydrocarbon emissions are a function
(EO) emissions as a |Engine of commanded engine torque and engine speed, EO
hydrocarbon |function of HC = f(T g, N), where:
emissions commanded ] _ o .
torque and * EO HC is engine-out hydrocarbon emissions, in
engine speed kg/s.
* T, is commanded engine torque, in N-m.
* N is engine speed, in rpm.
%107
12
,

g 0.8

% 0.6

I

E 04

0.2
0
6000
200
2000
50
Engine Speed (RPM) 0 o
Commanded Torque (Nm)

Engine-out EO carbon Mapped SI |The engine-out carbon monoxide emissions are a
(EO) carbon |monoxide Engine function of commanded engine torque and engine
monoxide emissions as a speed, EO CO = f(T,g, N), where:
emissions function of

commanded
torque and
engine speed

* EO CO is engine-out carbon monoxide emissions, in
kg/s.

* T, is commanded engine torque, in N-m.
* N s engine speed, in rpm.

%103

50

Engine Speed (RPM) 0 o
Commanded Torgue (Nm)
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Map Used For In Description
Engine-out EO nitric oxide |Mapped SI |The engine-out nitric oxide and nitrogen dioxide
(EO) nitric and nitrogen Engine emissions are a function of commanded engine torque
oxide and dioxide and engine speed, EO NOx = f(T,,4, N), where:
nitrogen emissions as a ) . o .
dioxide function of * EO NOx is engine-out nitric oxide and nitrogen
emissions commanded dioxide emissions, in kg/s.
torque and * T.ngis commanded engine torque, in N-m.
engine speed * N is engine speed, in rpm.
x107*
1.5
2
&
=
Q 05
w
0
6000
50
Engine Speed (RPM) 0 o
Commanded Torque (Nm)
Engine-out EO carbon Mapped SI |The engine-out carbon dioxide emissions are a
(EO) carbon |dioxide Engine function of commanded engine torque and engine
dioxide emissions as a speed, EO CO2 = f(T g, N), where:
emissions function of , _ o o _
commanded * [EO CO2 is engine-out carbon dioxide emissions, in
torque and kg/s.
engine speed * T.ngis commanded engine torque, in N-m.
* N is engine speed, in rpm.
1‘_‘?"%—‘ o
=S
oY
2000
Engine Speed (RPM) 0 g
Commanded Torque (Nm)
See Also

Mapped CI Engine | Mapped SI Engine




Engine Calibration Maps

External Websites

. Virtual Engine Calibration: Making Engine Calibration Part of the Engine Hardware Design
Process
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1 Getting Started

Yaw Stability on Varying Road Surfaces

This example shows how to run the vehicle dynamics double-lane change maneuver on different road
surfaces, analyze the vehicle yaw stability, and determine the maneuver success.

ISO 3888-2 defines the double-lane change maneuver to test the obstacle avoidance performance of a
vehicle. In the test, the driver:

» Accelerates until vehicle hits a target velocity

* Releases the accelerator pedal

* Turns steering wheel to follow path into the left lane

» Turns steering wheel to follow path back into the right lane

Typically, cones mark the lane boundaries. If the vehicle and driver can negotiate the maneuver
without hitting a cone, the vehicle passes the test.

For more information about the reference application, see “Double-Lane Change Maneuver” on page
3-4.

helpersetupdlc;

Visualization

R

T

Lane Change Reference

(I ;‘
Generatar |

Driver Commands
Predictive Driver

» oY »

-3 -

Conirollers

Environment L

Sensors

Passenger Vehicle

Help

Copyright 2018-2020 The MathWorks, Inc.

Run a Double-Lane Change Maneuver

1. Open the Lane Change Reference Generator block. By default, the maneuver is set with these
parameters:

* Longitudinal entrance velocity setpoint — 35 mph
* Vehicle width — 2 m

* Lateral reference position breakpoints and Lateral reference data — Values that specify the
lateral reference trajectory as a function of the longitudinal distance
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Yaw Stability on Varying Road Surfaces

¥l Btock Passrneters Lane Change Beference Genersior *
Double Lane Change Sounce (mask) (lnk)

Once the tanget longitudingl veloaty s achigved, this biock will pommand a gerp
acocleration signal and generabe a lateral refenence trajectory as a function of
lengitudingd displacement. Signals indicating the ket and right lane boundaries are
ako generatod a5 a funchion of the specified track width. An additional distance may
e presscribaid after the tanget longfudinal velodty price to begirming the maneuver.

Faramaters

Maneuver start time, ©_stat [5]: i_EI

Inertial longitudinal position of gake entrance, XGate [m]: 175

Longtudingl entrance velocty setpoint, xdot_ref: |35

Longitudingl entrance velocty setpoint units, xdatinit []:
[mah

Viehicks width, vehit [m]: |2

Lateral offset, toff [m]: | VEH.InitialatPosition

£l Use reference data

Lateral reference position breskpoints [m]: [DLCKres
Listeral reférence data, latftef [m]: |DLCYref

e

2. In the Visualization subsystem, open the 3D Engine block. By default, the 3D Engine parameter is
set to Disabled. For the 3D visualization engine platform requirements and hardware
recommendations, see the “3D Visualization Engine Requirements and Limitations” on page 8-6.

3. Run the maneuver. As the simulation runs, view the vehicle information.

In the Vehicle Position window, view the vehicle longitudinal distance as a function or the lateral

distance.
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4] Vehicle Pasition - O x
File Edit View Insert Tools Desktop Window Help -

EEDCIEEIDY

250 [velocty: 9 ms
Engine: 1273 RPM
Gear: 4

200

-
n
=

X Distance [m]
=

n
o]

-100  -50 0 50 100
Y Distance [m]

* In the Visualization subsystem, open the Lane Change scope block to display the lateral
displacement as a function of time. The red line marks the cone boundary. The blue line marks the
reference trajectory and the green line marks the actual trajectory. The green line does come
close to the red line that marks the cones.
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Yaw Stability on Varying Road Surfaces

| & Lane Change = 0 »
File Tools WView Simulation Help "
8- 0P ®| % &-| K- F@-
Double Lane Change: Laleral Displacemant

E
5
g
&
£
3
E
5
§
L}
5
5
3

iFl.eud;.- Sampls based T=25000

* In the Visualization subsystem, if you enable the 3D Engine block visualization environment, you
can view the vehicle response in the AutoVrtlEnv window.

Sweep Surface Friction

Run the reference application on three road surfaces with different friction scaling coefficients. Use
the results to analyze the yaw stability and help determine the success of the maneuver.
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1. In the double-lane change reference application model DLCReferenceApplication, open the
Environment subsystem. The Friction block parameter Constant value specifies the friction scaling
coefficient. By default, the friction scaling coefficient is 1. 0. The reference application uses the
coefficient to adjust the friction at every time step.

2. Enable signal logging for the velocity, lane, and ISO signals. You can use the Simulink® editor or,
alternatively, these MATLAB® commands. Save the model.

* Enable signal logging for the Lane Change Reference Generator outport Lane signal.

Lane Change Reference
Generator

Oriver Commands
Predictive Dnver

mdl = 'DLCReferenceApplication’;

open_system(mdl) ;

ph=get param('DLCReferenceApplication/Lane Change Reference Generator', 'PortHandles');
set param(ph.Outport(1l), 'DatalLogging','on');

* Enable signal logging for the Passenger Vehicle block outport signal.

Passenger ehicle

ph=get param('DLCReferenceApplication/Passenger Vehicle', 'PortHandles');
set param(ph.OQutport(1l), 'DataLogging','on');

* In the Visualization subsystem, enable signal logging for the ISO block.
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[%l Block Parameters: 150 15037-1:2006
150 15037-1:2006 (mask)

Enables display of 1SO 15037-1:2006 standard measurement
signals in the Simulation Data Inspector.

Parameters
150 Measurements
(® Enabled
bled

set param([mdl '/Visualization/ISO 15037-1:2006'], 'Measurement', 'Enable');

3. Set up a vector with the friction scaling coefficients, Lambdamu, that you want to investigate. For
example, to examine friction scaling coefficients equal to 0.9, 0.95, and 1.0, at the command line

enter:

lambdamu = [0.9, 0.95, 1.0];
numExperiments = length(lambdamu);

4. Create an array of simulation inputs that sets Tambdamu equal to the Friction constant block
parameter.

for idx = numExperiments:-1:1
in(idx) = Simulink.SimulationInput(mdl);
in(idx) = in(idx).setBlockParameter([mdl '/Environment/Friction'],...
'"Value',['ones(4,1).*',num2str(lambdamu(idx))]1);
end

5. Set the simulation stop time at 25 s. Save the model and run the simulations. If available, use
parallel computing.

set _param(mdl, 'StopTime', '25")

save_system(mdl)

tic;

simout = parsim(in, 'ShowSimulationManager','on');
toc;

[24-Feb-2020 11:19:31] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'local' profile ...
Preserving jobs with IDs: 13 because they contain crash dump files.

You can use 'delete(myCluster.Jobs)' to remove all jobs created with profile local.

Connected to the parallel pool (number of workers: 6).
[24-Feb-2020 11:20:17] Starting Simulink on parallel workers...
[24-Feb-2020 11:20:44] Loading project on parallel workers...
[24-Feb-2020 11:20:44] Configuring simulation cache folder on parallel workers...
[24-Feb-2020 11:20:52] Loading model on parallel workers...
[24-Feb-2020 11:21:20] Running simulations...

[24-Feb-2020 11:23:19] Completed 1 of 3 simulation runs
[24-Feb-2020 11:23:20] Completed 2 of 3 simulation runs
[24-Feb-2020 11:23:20] Completed 3 of 3 simulation runs
[24-Feb-2020 11:23:20] Cleaning up parallel workers...

Elapsed time is 245.716798 seconds.

6. After the simulations complete, close the Simulation Data Inspector windows.

To create
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Use Simulation Data Inspector to Analyze Results

Use the Simulation Data Inspector to examine the results. You can use the Ul or, alternatively,
command-line functions.

1. Open the Simulation Data Inspector. On the Simulink Toolstrip, on the Simulation tab, under
Review Results, click Data Inspector.

* In the Simulation Data Inspector, select Import.

,‘ Impoirt .

Impon from workspace or fi

* In the Import dialog box, clear Logsout. Select simout (1), simout(2), and simout(3).
Select Import.

Import

mport tirme seres dala from the base workspace or & file

Import from: » Base workspacs

File

Import to: o MNew un

Existing run

W gt

o b SEmoutil)
¢ simoul(2)

< simoul{3)

* Use the Simulation Data Inspector to examine the results.

2. Alternatively, use these MATLAB commands to create 6 plots. The first three plots mark the upper
lane boundary, UB, lower lane boundary, LB, and lateral vehicle distance, Y, for each run.

The next three plots provide the lateral acceleration, ay, lateral vehicle distance, Y, and yaw rate, r,
for each run.

for idx = l:numExperiments
% Create sdi run object
simoutRun(idx)=Simulink.sdi.Run.create;
simoutRun(idx) .Name=["'lambdamu = ', num2str(lambdamu(idx))];
add(simoutRun(idx), 'vars',simout(idx));

end

sigcolor=[1 0 O];

for idx = l:numExperiments
% Extract the maneuver upper and lower lane boundaries
ubsignal(idx)=getSignalByIndex(simoutRun(idx),1);
ubsignal(idx).LineColor = sigcolor;
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lbsignal(idx)=getSignalByIndex(simoutRun(idx),2);
lbsignal(idx).LineColor = sigcolor;

end

sigcolor=[0 1 0;0 0 1;1 0 1];

for idx = l:numExperiments
% Extract the lateral acceleration, position, and yaw rate
ysignal(idx)=getSignalByIndex(simoutRun(idx),b27);
ysignal(idx).LineColor =sigcolor((idx),:);
rsignal(idx)=getSignalByIndex(simoutRun(idx),77);
rsignal(idx).LineColor =sigcolor((idx),:);
asignal(idx)=getSignalByIndex(simoutRun(idx),79);
asignal(idx).LineColor =sigcolor((idx),:);

end

Simulink.sdi.view

Simulink.sdi.setSubPlotLayout (numExperiments,2);

for idx = l:numExperiments
% Plot the lateral position and lane boundaries
plotOnSubPlot(ubsignal(idx), (idx),1,true);
plotOnSubPlot(lbsignal(idx), (idx),1,true);
plotOnSubPlot(ysignal(idx), (idx),1,true);

end

for idx = l:numExperiments
% Plot the lateral acceleration, position, and yaw rate
plotOnSubPlot(asignal(idx),1,2,true);
plotOnSubPlot(ysignal(idx),2,2,true);
plotOnSubPlot(rsignal(idx),3,2,true);

end

The results are similar to these plots, which indicate that the vehicle has a yaw rate of about .64
rad/s when the friction scaling coefficient is equal to 1.
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Further Analysis
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To explore the results further, use these commands to extract the lateral acceleration, steering angle,
and vehicle trajectory from the simout object.
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1. Extract the lateral acceleration and steering angle. Plot the data. The results are similar to this
plot. They indicate that the greatest lateral acceleration occurs when the friction scaling coefficient is

1.

figure

for idx = 1l:numExperiments
% Extract Data
log = get(simout(idx), 'logsout');
sa=log.get('Steering-wheel angle').Values;
ay=log.get('Lateral acceleration').Values;

legend labels{idx} = ['lambdamu = ', num2str(lambdamu(idx))];

% Plot steering angle vs. lateral acceleration
plot(sa.Data,ay.Data)
hold on
end
% Add labels to the plots
legend(legend labels, 'Location', 'best');
title('Lateral Acceleration')
xlabel('Steering Angle [deg]')
ylabel('Acceleration [m/s"2]"')
grid on

Lateral Acceleration

Acceleration [mfs.‘?]

lambdamu = 0.9
lambdamu = 0.95
lambdamu = 1

—1'} i i i i i
-800 600 =400 =200 0 200

Steering Angle [deg]

400 600

800

2. Extract the vehicle path. Plot the data. The results are similar to this plot. They indicate that the
greatest lateral vehicle position occurs when the friction scaling coefficient is 0. 9.

figure
for idx = l:numExperiments
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% Extract Data

log = get(simout(idx), 'logsout');

x = log{3}.Values.Body.InertFrm.Cg.Disp.X.Data;
y = log{3}.Values.Body.InertFrm.Cg.Disp.Y.Data;

legend labels{idx} = ['lambdamu = ', num2str(lambdamu(idx))];
% Plot vehicle location

plot(y,x)

hold on

end

% Add labels to the plots

legend(legend labels, 'Location', 'best');
title('Vehicle Path'")

xlabel('Y Position [m]"')

ylabel('X Position [m]")

grid on

Vehicle Path
300 : . .

lambdamu = 0.9
lambdamu = 0.895
260 lambdamu = 1 7

ZDD B — e — —E— S— —_— —_— —. - - i
150 |

100 4

X Position [m]

¥ Position [m)]

See Also
Simulink.SimulationInput | Simulink.SimulationOutput

References

[1]1 ISO 3888-2: 2011. Passenger cars — Test track for a severe lane-change manoeuvre.
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See Also

Related Examples

. “Send and Receive Double-Lane Change Scene Data” on page 3-71
More About
. “Double-Lane Change Maneuver” on page 3-4

. “How 3D Simulation for Vehicle Dynamics Blockset Works” on page 8-8
. Simulation Data Inspector
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Vehicle Steering Gain at Different Speeds

This example shows how to use the vehicle dynamics slowly increasing steering reference application
to analyze the impact of the steering angle and speed on vehicle handling. Specifically, you can
calculate the steering gain when you run the maneuver with different speed set points. Based on the
constant speed, variable steer test defined in SAE J266, the slowly increasing steering maneuver
helps characterize the lateral dynamics of the vehicle. In the test, the driver: Accelerates until vehicle
hits a target velocity.

* Maintains a target velocity.

* Linearly increases the steering wheel angle from 0 degrees to a maximum angle.
* Maintains the steering wheel angle for a specified time.

* Linearly decreases the steering wheel angle from maximum angle to O degrees.

For more information about the reference application, see “Slowly Increasing Steering Maneuver” on
page 3-32.

helpersetupsis;

h

‘iehFdbk Raf

#|  Visualization

Slowly Increasing Steer

Diriver Commands
Predictive Driver

h

r—

h
h

¥

I e

Controllers
Help Environment

¥

Senszors

Passenger Vehicle

Copyright 2018-2020 The Math\Waorks, Inc.

Run a Slowly Increasing Steering Maneuver

1. Open the Swept Sine Reference Generator block. By default, the maneuver is set with these
parameters:

* Longitudinal speed setpoint — 50 mph
* Handwheel rate — 13.5 deg
¢ Maximum handwheel angle — 270 deg
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2. In the Visualization subsystem, open the 3D Engine block. By default, the 3D Engine parameter is
set to Disabled. For the 3D visualization engine platform requirements and hardware
recommendations, see the “3D Visualization Engine Requirements and Limitations” on page 8-6.

3. Run the maneuver with the default settings. As the simulation runs, view the vehicle information.

* In the Vehicle Position window, view the vehicle longitudinal distance as a function or the lateral
distance. The yellow line displays the yaw rate. The blue line shows the steering angle.

4| Vehicle Position — | »

File Edit View Inset Tools Desktop Window Help o

Daede (308~ [E

X Distance [m]
— — M
o ot o
o o o

o
o

0 100 200

Y Distance [m]

* In the Visualization subsystem, open the Yaw Rate and Steer Scope block to display the yaw rate
and steering angle versus time.
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1-30

4| Yaw Rate and Steer — O >

File  Tools  View  Simulation  Help u

- 4O |- A& FH-

Ready Sample based | T=80.000

Sweep Speed Set Points
Run the slowly increasing steering angle reference application with three different speed set points.

1. In the slowly increasing steering reference application model ISReferenceApplication, open the
Slowly Increasing Steer block. The Longitudinal speed set point, xdot_r block parameter sets the
vehicle speed. By default, the speed is 50 mph.

2. Enable signal logging for the velocity, lane, and ISO signals. You can use the Simulink® editor or,
alternatively, these MATLAB® commands. Save the model.

» Enable signal logging for the Slowly Increasing Steer Ref signal outport.

54

=i ahFdbk Rl il bR

%.

WVerFdik

Slowly Increasing Stear
Driver Commands

Pradictrve Driver
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mdl = 'ISReferenceApplication’;

open_system(mdl);

ph=get param('ISReferenceApplication/Slowly Increasing Steer', 'PortHandles');
set param(ph.Outport(1), 'DataLogging', 'on');

* Enable signal logging for the Passenger Vehicle block outport signal.

Passenger Viehicle

ph=get param('ISReferenceApplication/Passenger Vehicle', 'PortHandles');
set param(ph.OQutport(1), 'DatalLogging','on');

* In the Visualization subsystem, enable signal logging for the ISO block.

&l Block Parameters: 150 15037-1:2006
IS0 15037-1:2006 [maszk)

Enables display of 1SO 15037-1:2006 standard measurement
signals in the Simulation Data Inspector.

Parameters
150 Measuraments
(® Enabled
O Disabled

set param([mdl '/Visualization/ISO 15037-1:2006'], 'Measurement', 'Enable');

3. Set up a speed set point vector, xdot_r, that you want to investigate. For example, at the
command line, type:

vmax = [40, 50, 60];
numExperiments = length(vmax);

4. Create an array of simulation inputs that set the Swept Sine Reference Generator block parameter
Steering amplitude, theta_hw equal to amp.

for idx = numExperiments:-1:1
in(idx) = Simulink.SimulationInput(mdl);
in(idx) = in(idx).setBlockParameter([mdl '/Slowly Increasing Steer'],
‘xdot r', num2str(vmax(idx)));
end

5. Save the model and run the simulations. If available, use parallel computing.
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save_system(mdl)

tic;

simout = parsim(in, 'ShowSimulationManager', 'on');
toc;

[25-Jun-2020 23:09:21] Checking for availability of parallel pool...

Starting parallel pool (parpool) using the 'local' profile ...

Preserving jobs with IDs: 13 because they contain crash dump files.

You can use 'delete(myCluster.Jobs)' to remove all jobs created with profile local. To create 'm
Connected to the parallel pool (number of workers: 6).

[25-Jun-2020 23:10:17] Starting Simulink on parallel workers...

[25-Jun-2020 23:10:52] Loading project on parallel workers...

[25-Jun-2020 23:10:52] Configuring simulation cache folder on parallel workers...
[25-Jun-2020 23:11:02] Loading model on parallel workers...

[25-Jun-2020 23:11:36] Running simulations...

[25-Jun-2020 23:16:52] Completed 1 of 3 simulation runs

[25-Jun-2020 23:16:52] Completed 2 of 3 simulation runs

[25-Jun-2020 23:17:03] Completed 3 of 3 simulation runs

[25-Jun-2020 23:17:03] Cleaning up parallel workers...

Elapsed time is 486.198657 seconds.

6. After the simulations complete, close the Simulation Data Inspector windows.
Use Simulation Data Inspector to Analyze Results

Use the Simulation Data Inspector to examine the results. You can use the Ul or, alternatively,
command-line functions.

1. Open the Simulation Data Inspector. On the Simulink Toolstrip, on the Simulation tab, under
Review Results, click Data Inspector.

¢ In the Simulation Data Inspector, select Import.
‘ Import

Import from workspace or fila

e In the Import dialog box, clear Logsout. Select simout (1), simout(2), and simout(3).
Select Import.
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Import

mport bme senes dale from Ihe Dase workspace or & e

Import from: » Base workspace

File

Import to: o New nun

Existing run

W gt

& F SEmout(1)
< ¢ simout(2)

< # simout(d)

* Use the Simulation Data Inspector to examine the results.

2. Alternatively, use these MATLAB commands to plot the longitudinal velocity, steering wheel angle,
lateral acceleration, longitudinal position, and lateral position.

for idx = l:numExperiments
% Create sdi run object
simoutRun(idx)=Simulink.sdi.Run.create;
simoutRun(idx).Name=['Velocity = ', num2str(vmax(idx))];
add(simoutRun(idx), 'vars',simout(idx));

end

sigcolor=[0 1 0;0 0 1;1 0 1];

for idx = l:numExperiments
% Extract the lateral acceleration, position, and steering
xsignal(idx)=getSignalByIndex(simoutRun(idx),22);
xsignal(idx).LineColor =sigcolor((idx),:);
ysignal(idx)=getSignalByIndex(simoutRun(idx),23);
ysignal(idx).LineColor =sigcolor((idx),:);
msignal(idx)=getSignalByIndex(simoutRun(idx),b255);
msignal(idx).LineColor =sigcolor((idx),:);
ssignal(idx)=getSignalByIndex(simoutRun(idx),b251);
ssignal(idx).LineColor =sigcolor((idx),:);
asignal(idx)=getSignalByIndex(simoutRun(idx),259);
asignal(idx).LineColor =sigcolor((idx),:);

end

Simulink.sdi.view

Simulink.sdi.setSubPlotLayout(5,1);

for idx = l:numExperiments
% Plot the lateral position, steering angle, and lateral acceleration
plotOnSubPlot(msignal(idx),1,1,true);
plotOnSubPlot(ssignal(idx),2,1,true);
plotOnSubPlot(asignal(idx),3,1,true);
plotOnSubPlot(xsignal(idx),4,1,true);
plotOnSubPlot(ysignal(idx),5,1,true);

end

The results are similar to these plots, which indicate that the greatest lateral acceleration occurs
when the vehicle velocity is 40 mph.
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Further Analysis

To explore the results further, use these commands to extract the lateral acceleration, steering angle,
and vehicle trajectory from the simout object.
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1. Extract the lateral acceleration and steering angle. Plot the data. The results are similar to this
plot.

figure

for idx = l:numExperiments
% Extract Data
log = get(simout(idx), 'logsout');
sa=log.get('Steering-wheel angle').Values;
ay=log.get('Lateral acceleration').Values;
firstorderfit = polyfit(sa.Data,ay.Data,l);
gain(idx)=firstorderfit(1l);
legend labels{idx} = [num2str(vmax(idx)), ' mph: Gain ',

num2str(gain(idx)), ' m/(deg s"2)'1];

% Plot steering angle vs. lateral acceleration
plot(sa.Data,ay.Data)
hold on

end

% Add labels to the plots

legend(legend labels, 'Location', 'best');
title('Lateral Acceleration')
xlabel('Steering Angle [deg]')
ylabel('Acceleration [m/s”2]")

grid on

Lateral Acceleration
g : : : :

Acceleration [mfs‘?]
=

3 = -
2 - -
i 40 mph: Gain = 0.032209 mi(deg s°) ]
ot 50 mph: Gain = 0.035854 m/(deg 52} |
60 mph: Gain = 0.036081 m/(deg 52}
__1 1 1 1 1 1 1
-50 0 50 100 150 200 250 300

Steering Angle [deg]

2. Extract the vehicle path. Plot the data. The results are similar to this plot.

figure
for idx = l:numExperiments
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% Extract Data
log = get(simout(idx), 'logsout');
x = log{1l}.Values.Body.InertFrm.Cg.Disp.X.Data;
y = log{1}.Values.Body.InertFrm.Cg.Disp.Y.Data;
legend labels{idx} = [num2str(vmax(idx)), ' mph'];
% Plot vehicle location
axis('equal')
plot(y,x)
hold on
end
% Add labels to the plots
legend(legend labels, 'Location', 'best');
title('Vehicle Path'")
xlabel('Y Position [m]"')
ylabel('X Position [m]")
grid on

Vehicle Path
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References

[1] SAE ]J266. Steady-State Directional Control Test Procedures For Passenger Cars and Light Trucks.
Warrendale, PA: SAE International, 1996.

See Also
Simulink.SimulationInput | Simulink.SimulationOutput | polyfit
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More About

. “Slowly Increasing Steering Maneuver” on page 3-32
. “How 3D Simulation for Vehicle Dynamics Blockset Works” on page 8-8
. Simulation Data Inspector
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Vehicle Lateral Acceleration at Different Speeds

This example shows how to use the vehicle dynamics constant radius reference application to analyze
the impact of speed on the vehicle lateral dynamics. Specifically, you can examine the lateral
acceleration when you run the maneuver with different speeds. For information about similar
maneuvers, see standards SAE J266 199601 and ISO 4138:2012.

During the maneuver, the vehicle uses a predictive driver model to maintain a pre-specified turn
radius at a set velocity.

For more information about the reference application, see “Constant Radius Maneuver” on page 3-
43.

helpersetupcr;

¥

- Ref . —
v \ Visualization
i
| VehF N
Pl N
) : I
Reference Generator Driver Commands |
Constant Radius Predictive Driver =
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— e} O L L
- —
L e »
Controllers
Help Environment e
Sensors

Passenger Vehicla
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Run a Constant Radius Maneuver

1. Open the Reference Generator block. By default, the maneuver is set with these parameters:

* Maneuver — Constant radius

* Use maneuver-specific driver, initial position, and scene — on

* Longitudinal velocity — 35 mph

* Radius value — 100 m

2. Select the Reference Generator block 3D Engine tab. By default, the 3D Engine parameter is

Disabled. For the 3D visualization engine platform requirements and hardware recommendations,
see the “3D Visualization Engine Requirements and Limitations” on page 8-6.

3. Run the maneuver with the default settings. As the simulation runs, view the vehicle information.
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* In the Vehicle Position window, view the vehicle longitudinal distance as a function or the lateral

distance. The yellow line displays the yaw rate. The blue line shows the steering angle.

[4] Vehicle Position — O 4
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T
......
....

-100 ¢

0 50 100 150 200
Y Distance [m]

* In the Visualization subsystem, open the Steer, Velocity, Lat Accel Scope block to display the

steering angle, velocity, and lateral acceleration versus time.
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Sweep Speed

Run the constant radius reference application with three different speeds. Stop the simulation if the
vehicle exceeds a lateral acceleration threshold of .5 g.

1. In the slowly increasing steering reference application model CRReferenceApplication, open the
Reference Generator block. The Longitudinal speed set point, xdot_r block parameter sets the
vehicle speed. By default, the speed is 50 mph.

2. Enable signal logging for the velocity, lane, and ISO signals. You can use the Simulink® editor or,
alternatively, these MATLAB® commands. Save the model.

» Select the Reference Generator block Stop simulation at lateral acceleration threshold
parameter.
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Lateral acceleration threshold, ay_max [g]: |{].5

b Stop simulation at lateral acceleration threshald

mdl = 'CRReferenceApplication';
open_system(mdl) ;
set param([mdl '/Reference Generator'],'cr ay stop','on');

* Enable signal logging for the Reference Generator Vis signal outport.

Reference Generator Driver Commands
Constant Radius Predictive Driver

ph=get param('CRReferenceApplication/Reference Generator', 'PortHandles');
set param(ph.Outport(1l), 'DatalLogging','on');

* Enable signal logging for the Passenger Vehicle block outport signal.

Passenger \ishichs

ph=get param('CRReferenceApplication/Passenger Vehicle', 'PortHandles"');
set param(ph.Outport(1), 'DatalLogging','on');

* In the Visualization subsystem, enable signal logging for the ISO block.
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&) Block Parameters: 150 15037-1:2006
IS0 15037-1:2006 (mask)

Enables display of 1SO 15037-1:2006 standard measurement
signals in the Simulation Data Inspector.

Parameters
150 Measurements
(® Enabled
sabled

set param([mdl '/Visualization/ISO 15037-1:2006'], 'Measurement', 'Enable');

3. Set up a speed set point vector, xdot 1, that you want to investigate. For example, at the command
line, type:

vmax = [35, 40, 45];
numExperiments = length(vmax);

4. Create an array of simulation inputs that set the Reference Generator block parameter
Longitudinal velocity reference, xdot_r equal to xdot r.

for idx = numExperiments:-1:1
in(idx) = Simulink.SimulationInput(mdl);
in(idx) = in(idx).setBlockParameter([mdl '/Reference Generator'],
'xdot r', num2str(vmax(idx)));
end

5. Save the model and run the simulations. If available, use parallel computing.

save system(mdl)

tic;

simout = parsim(in, 'ShowSimulationManager', 'on');
toc;

[24-Feb-2020 12:04:54] Checking for availability of parallel pool...
[24-Feb-2020 12:04:55] Starting Simulink on parallel workers...
[24-Feb-2020 12:04:55] Loading project on parallel workers...
[24-Feb-2020 12:04:55] Configuring simulation cache folder on parallel workers...
[24-Feb-2020 12:04:55] Loading model on parallel workers...
[24-Feb-2020 12:05:03] Running simulations...

[24-Feb-2020 12:07:04] Completed 1 of 3 simulation runs

[24-Feb-2020 12:07:33] Completed 2 of 3 simulation runs

[24-Feb-2020 12:08:14] Completed 3 of 3 simulation runs

[24-Feb-2020 12:08:14] Cleaning up parallel workers...

Elapsed time is 210.544297 seconds.

6. Close the Simulation Data Inspector windows.

Use Simulation Data Inspector to Analyze Results

Use the Simulation Data Inspector to examine the results. You can use the Ul or, alternatively,
command-line functions.

1. Open the Simulation Data Inspector. On the Simulink Toolstrip, on the Simulation tab, under
Review Results, click Data Inspector.
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* In the Simulation Data Inspector, select Import.
Import
i |::g:j':1 from workspace or file

* Inthe Import dialog box, clear logsout. Select simout (1), simout(2), and simout(3). Select
Import.

Import

Import time senas dala from Ihe base workspace or & e

Import from: » Base workspace

File

Import to: o New run

Existing run

W ogot
¥k simout(1)
< ¢ simoul(2)

< ¢ simoul(3)

* Use the Simulation Data Inspector to examine the results.

2. Alternatively, use these MATLAB commands to plot the longitudinal velocity, lateral acceleration,
and the steering wheel angle.

for idx = l:numExperiments
% Create sdi run object
simoutRun(idx)=Simulink.sdi.Run.create;
simoutRun(idx).Name=['Velocity = ', num2str(vmax(idx))];
add(simoutRun(idx), 'vars',simout(idx));

end

sigcolor=[0 1 0;0 0 1;1 0 1];

for idx = l:numExperiments
% Extract the lateral acceleration, position, and steering
msignal(idx)=getSignalByIndex(simoutRun(idx),261);
msignal(idx).LineColor =sigcolor((idx),:);
ssignal(idx)=getSignalByIndex(simoutRun(idx),248);
ssignal(idx).LineColor =sigcolor((idx),:);
asignal(idx)=getSignalByIndex(simoutRun(idx),245);
asignal(idx).LineColor =sigcolor((idx),:);

end

Simulink.sdi.view

Simulink.sdi.setSubPlotLayout(3,1);

for idx = l:numExperiments
% Plot the lateral position, steering angle, and lateral acceleration
plotOnSubPlot(ssignal(idx),1,1,true);
plotOnSubPlot(msignal(idx),2,1,true);
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plotOnSubPlot(asignal(idx),3,1,true);
end

The results are similar to these plots, which indicate that the greatest lateral acceleration occurs
when the vehcile velocity is 45 mph.

1-44



Vehicle Lateral Acceleration at Different Speeds
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Further Analysis

To explore the results further, use these commands to extract the lateral acceleration, steering angle,
and vehicle trajectory from the simout object.
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1. Extract the lateral acceleration and steering angle. Plot the data. The results are similar to this
plot.

figure

for idx = l:numExperiments
% Extract Data
log = get(simout(idx), 'logsout');
sa=log.get('Steering-wheel angle').Values;
ay=log.get('Lateral acceleration').Values;
firstorderfit = polyfit(sa.Data,ay.Data,l);
gain(idx)=firstorderfit(1l);
legend labels{idx} = [num2str(vmax(idx)),

num2str(gain(idx)), ' m/(deg s"2)'1];

% Plot steering angle vs. lateral acceleration
plot(sa.Data,ay.Data)
hold on

mph: Gain = ',

end

% Add labels to the plots

legend(legend labels, 'Location', 'best');
title('Lateral Acceleration')
xlabel('Steering Angle [deg]')
ylabel('Acceleration [m/s”2]")

grid on
Lateral Acceleration
5 T T T T T T T T
4 - -
P
N-‘E '?"i
[ S 2 - -
=
=
©
] L 4
D9
il ]
i ]
<
D - -
35 mph: Gain = 0.025902 m/{deg s°)
T 40 mph: Gain = 0.030173 m/(deg s7) ||
45 mph: Gain = 0.035526 m/(deg s°)
_2 i i i i i i i i

60 40  -20 0 20 40 60 80 100 120
Steering Angle [deg]

2. Extract the vehicle path. Plot the data. The results are similar to this plot.

figure
for idx = l:numExperiments
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% Extract Data
log = get(simout(idx), 'logsout');
x = log{1l}.Values.Body.InertFrm.Cg.Disp.X.Data;
y = log{1}.Values.Body.InertFrm.Cg.Disp.Y.Data;
legend labels{idx} = [num2str(vmax(idx)), ' mph'];
% Plot vehicle location
axis('equal')
plot(y,x)
hold on
end
% Add labels to the plots
legend(legend labels, 'Location', 'best');
title('Vehicle Path'")
xlabel('Y Position [m]"')
ylabel('X Position [m]")
grid on

Vehicle Path
100 I T

80 r 7

60T 35 mph 1

40 mph
45 mph

[

[
T
1

X Position [m]

-100 | i . i . - 1

0 50 100 150 200
Y Position [m)]
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See Also
Simulink.SimulationInput | Simulink.SimulationOutput | polyfit

More About
. “Constant Radius Maneuver” on page 3-43
. “How 3D Simulation for Vehicle Dynamics Blockset Works” on page 8-8

. Simulation Data Inspector
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Frequency Response to Steering Angle Input

h

This example shows how to use the vehicle dynamics swept-sine steering reference application to
analyze the dynamic steering response to steering inputs. Specifically, you can examine the vehicle
frequency response and lateral acceleration when you run the maneuver with different sinusoidal
wave steering amplitudes.

The swept-sine steering maneuver tests the vehicle frequency response to steering inputs. In the test,
the driver:

» Accelerates until the vehicle hits a target velocity.
* Commands a sinusoidal steering wheel input.

* Linearly increase the frequency of the sinusoidal wave.

For more information about the reference application, see “Swept-Sine Steering Maneuver” on page
3-22.
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Run a Swept-Sine Steering Maneuver

1. Open the Swept Sine Reference Generator block. By default, the maneuver is set with these
parameters:

* Longitudinal velocity setpoint — 30 mph
* Steering amplitude — 90 deg
* Final frequency — 0.7 Hz
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2. In the Visualization subsystem, open the 3D Engine block. By default, the 3D Engine parameter is
set to Disabled. For the 3D visualization engine platform requirements and hardware
recommendations, see the “3D Visualization Engine Requirements and Limitations” on page 8-6.

3. Run the maneuver with the default settings. As the simulation runs, view the vehicle information.

* In the Vehicle Position window, view the vehicle longitudinal distance as a function or the lateral
distance. The yellow line is the yaw rate. The blue line is the steering angle.

4| Vehicle Position — | Pl

File Edit View Inset Tools Desktop Window Help o

Daede (308~ [E

r

3 I&:city"_ 14 mis
Engine: 1537 RPM
Gedr: 5

)
o
o

-
o
o

X Distance [m]

0 100 200 300
Y Distance [m]

* In the Visualization subsystem, open the Yaw Rate and Steer Scope block to display the yaw rate
and steering angle versus time.



Frequency Response to Steering Angle Input
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Sweep Steering

Run the reference application with three different sinusoidal wave steering amplitudes.

1. In the swept-sine steering reference application model SSSReferenceApplication, open the Swept
Sine Reference Generator block. The Steering amplitude, theta_hw block parameter sets the

amplitude. By default, the amplitude is 90 deg.

2. Enable signal logging for the velocity, lane, and ISO signals. You can use the Simulink® editor or,
alternatively, these MATLAB® commands. Save the model.

* Enable signal logging for the Lane Change Reference Generator outport Lane signal.

TR R
| \VahF dbk Ref

Swept Sine Reference
Generator Driver Commands
Predictive Driver
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mdl = 'SSSReferenceApplication';

open_system(mdl);

ph=get param('SSSReferenceApplication/Swept Sine Reference Generator', 'PortHandles');
set param(ph.Outport(1), 'DataLogging', 'on');

* Enable signal logging for the Passenger Vehicle block outport signal.

Passenger Viehicle

ph=get param('SSSReferenceApplication/Passenger Vehicle', 'PortHandles');
set param(ph.OQutport(1), 'DatalLogging','on');

* In the Visualization subsystem, enable signal logging for the ISO block.

&l Block Parameters: 150 15037-1:2006
IS0 15037-1:2006 [maszk)

Enables display of 1SO 15037-1:2006 standard measurement
signals in the Simulation Data Inspector.

Parameters
150 Measuraments
(® Enabled
sabled

set param([mdl '/Visualization/ISO 15037-1:2006'], 'Measurement', 'Enable');

3. Set up a steering amplitude vector, amp, that you want to investigate. For example, at the
command line, type:

amp = [60, 90, 120];
numExperiments = length(amp);

4. Create an array of simulation inputs that set the Swept Sine Reference Generator block parameter
Steering amplitude, theta_hw equal to amp.

for idx = numExperiments:-1:1
in(idx) = Simulink.SimulationInput(mdl);
in(idx) = in(idx).setBlockParameter([mdl '/Swept Sine Reference Generator'],...
"theta _hw',num2str(amp(idx)));
end

5. Save the model and run the simulations. If available, use parallel computing.



Frequency Response to Steering Angle Input

save_system(mdl)

tic;

simout = parsim(in, 'ShowSimulationManager', 'on');

toc;

[24-Feb-2020
[24-Feb-2020
[24-Feb-2020
[24-Feb-2020
[24-Feb-2020
[24-Feb-2020
[24-Feb-2020
[24-Feb-2020
[24-Feb-2020
[24-Feb-2020
Elapsed time

11
11
11
11
11
11
11
11
11
11
is

144
144
144
144
144
144
146:
147
147
147

19]
19]
20]
20]
20]
28]
22]
13]
15]
15]

Checking for availability of parallel pool...

Starting Simulink on parallel workers...

Loading project on parallel workers...

Configuring simulation cache folder on parallel workers...
Loading model on parallel workers...

Running simulations...

Completed 1 of 3 simulation runs

Completed 2 of 3 simulation runs

Completed 3 of 3 simulation runs

Cleaning up parallel workers...

186.481140 seconds.

6. After the simulations complete, close the Simulation Data Inspector windows.

Use Simulation Data Inspector to Analyze Results

Use the Simulation Data Inspector to examine the results. You can use the Ul or, alternatively,
command-line functions.

1. Open the Simulation Data Inspector. On the Simulink Toolstrip, on the Simulation tab, under
Review Results, click Data Inspector.

* In the Simulation Data Inspector, select Import.

‘ Impoit

Impon from workspace of fila

* In the Import dialog box, clear logsout. Select simout (1), simout(2), and simout(3).

Select Import.

Import

Impart e sanes data from the base workspacs or & il

Import from: » Base workspacs

File

Impaort to: o MNew run

Existing run

v SImout(l)
< ¢ simoul(2)

J| v simout(3)
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* Use the Simulation Data Inspector to examine the results.

2. Alternatively, use these MATLAB commands to plot data for each run. For example, use these
commands to plot the lateral position, steering wheel angle, and lateral acceleration. The results are
similar to these plots, which show the results for each run.

for idx = l:numExperiments
% Create sdi run object
simoutRun(idx)=Simulink.sdi.Run.create;
simoutRun(idx).Name=['Amplitude = ', num2str(amp(idx))];
add (simoutRun(idx), 'vars',simout (idx));

end

sigcolor=[0 1 0;0 0 1;1 0 11;

for idx = l:numExperiments
% Extract the lateral acceleration, position, and steering
ysignal(idx)=getSignalByIndex(simoutRun(idx),23);
ysignal(idx).LineColor =sigcolor((idx),:);
ssignal(idx)=getSignalByIndex(simoutRun(idx),b251);
ssignal(idx).LineColor =sigcolor((idx),:);
asignal(idx)=getSignalByIndex(simoutRun(idx),b259);
asignal(idx).LineColor =sigcolor((idx),:);

end

Simulink.sdi.view

Simulink.sdi.setSubPlotLayout(3,1);

for idx = l:numExperiments
% Plot the lateral position, steering angle, and lateral acceleration
plotOnSubPlot(ysignal(idx),1,1,true);
plotOnSubPlot(ssignal(idx),2,1,true);
plotOnSubPlot(asignal(idx),3,1,true);

end

The results are similar to these plots, which indicate that the greatest lateral acceleration occurs
when the steering amplitude is 120 deg.
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Further Analysis

To explore the results further, use these commands to extract the lateral acceleration, steering angle,
and vehicle trajectory from the simout object.

1. Extract the lateral acceleration and steering angle. Plot the data. The results are similar to this
plot.

figure

for idx = 1l:numExperiments
% Extract Data
log = get(simout(idx), 'logsout');
sa=log.get('Steering-wheel angle').Values;
ay=log.get('Lateral acceleration').Values;
legend labels{idx} = ['amplitude = ', num2str(amp(idx)), '~{\circ}'l];
% Plot steering angle vs. lateral acceleration
plot(sa.Data,ay.Data)
hold on

end

% Add labels to the plots

legend(legend labels, 'Location', 'best');

title('Lateral Acceleration')

xlabel('Steering Angle [deg]')

ylabel('Acceleration [m/s”2]")

grid on

Lateral Acceleration

[gs]
T

Acceleration [mfsz]
=

2k -
4+ i
— amplitude = 60
6 amplitude = 90 1
amplitude = 120
—B 1 1 1 1 1
-150 -100 50 0 50 100 150

Steering Angle [deg]

2. Extract the vehicle path. Plot the data. The results are similar to this plot.
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figure
for idx = l:numExperiments
% Extract Data
log = get(simout(idx), 'logsout');
x = log{1l}.Values.Body.InertFrm.Cg.Disp.X.Data;
y = log{1}.Values.Body.InertFrm.Cg.Disp.Y.Data;
legend labels{idx} = ['amplitude = ', num2str(amp(idx)), '"~{\circ}'];
% Plot vehicle location
axis('equal')
plot(y,x)
hold on
end
% Add labels to the plots
legend(legend labels, 'Location', 'best');
title('Vehicle Path'")
xlabel('Y Position [m]"')
ylabel('X Position [m]")

grid on
Vehicle Path
4':”} [ T T T T T i
350 | .
r’_,,/
__/
300 [ v .
.'/l'/

E 250 !
-
=)
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See Also

Simulink.SimulationInput | Simulink.SimulationOutput | fft

More About

. “Fourier Analysis and Filtering”
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. Simulation Data Inspector
. “Swept-Sine Steering Maneuver” on page 3-22
. “How 3D Simulation for Vehicle Dynamics Blockset Works” on page 8-8
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2 Coordinate Systems

Coordinate Systems in Vehicle Dynamics Blockset

Vehicle Dynamics Blockset uses these coordinate systems to calculate the vehicle dynamics and
position objects in the 3D visualization environment.

Environment

Description

Coordinate Systems

Vehicle dynamics
in Simulink

The right-hand rule establishes the X-Y-Z
sequence and rotation of the coordinate axes
used to calculate the vehicle dynamics. The
Vehicle Dynamics Blockset 3D simulation
environment uses these right-handed (RH)
Cartesian coordinate systems defined in the SAE
J670%1 and ISO 88558! standards:

e Earth-fixed (inertial)

* Vehicle

* Tire

*  Wheel

The coordinate systems can have either
orientation:

* Z-down — Defined in SAE J670[!
¢ Z-up — Defined in SAE J670(2 and ISO 8855!3!

“Earth-Fixed (Inertial)
Coordinate System” on page 2-
2

“Vehicle Coordinate System” on
page 2-3

“Tire and Wheel Coordinate
Systems” on page 2-3

3D visualization
engine

To position objects and query the 3D visualization
environment, the Vehicle Dynamics Blockset uses
a world coordinate system.

“World Coordinate System” on
page 2-5

Earth-Fixed (Inertial) Coordinate System

The earth-fixed coordinate system (Xg, Yz, Zr) axes are fixed in an inertial reference frame. The
inertial reference frame has zero linear and angular acceleration and zero angular velocity. In
Newtonian physics, the earth is an inertial reference.

2-2

Z  Venhicle Coordinate
System (Z-Down)
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Axis Description

Xz The X axis is in the forward direction of the vehicle.

Yz The X and Yy axes are parallel to the ground plane. The ground plane is a
horizontal plane normal to the gravitational vector.

Zy In the Z-up orientation, the positive Z; axis points upward.

In the Z-down orientation, the positive Z; axis points downward.

Vehicle Coordinate System

The vehicle coordinate system axes (Xy, Yy, Zy) are fixed in a reference frame attached to the vehicle.
The origin is at the vehicle sprung mass.

Z-Down Orientation

1l Yaw
b
zZ,
Axis Description
Xy The Xy, axis points forward and is parallel to the vehicle plane of symmetry.
Yy The Yy, axis is perpendicular to the vehicle plane of symmetry.
Zy In the Z-down orientation:

* Yy axis points to the right

* Zyaxis points downward

Tire and Wheel Coordinate Systems

The tire coordinate system axes (X1, Yy, Z7) are fixed in a reference frame attached to the tire. The
origin is at the tire contact with the ground.

The wheel coordinate system axes (X, Yy, Zy) are fixed in a reference frame attached to the wheel.
The origin is at the wheel center.

Z-Up Orientation’
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Positive "-_‘._!'_“ Tire
Inclination| . Trajectory
Angle Velocity Xy

~
Wheel Plane . Direction of
Y Positive Wheel Heading
T Slip Angle
Wheel
Road Flane Spin Axis
/1
Z-Down Orientation
Direction of
"™~ Positive Wheel Heading
© | Inclination Angle X
Wheel ! x
. SpinAxis | Wneel Fiane
N Tire
Trajectory
™ - f\- -¥ Welocity
= Paositive
Slip Angle
Foad Flane
Yl\'
YT
Z
Xr Xr and Y are parallel to the road plane. The intersection of the wheel plane and
Yy the road plane define the orientation of the X axis.
Zr Z7 points:
¢ Upward in the Z-up orientation
¢ Downward in the Z-down orientation
Xw Xy and Yy, are parallel to the wheel plane:

Reprinted with permission Copyright © 2008 SAE International. Further distribution of this material is not permitted
without prior permission from SAE.
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Axis Description
Yo * Xy is parallel to the local road plane.
* Yy is parallel to the wheel-spin axis.

Zw Zy points:

* Upward in the Z-up orientation
* Downward in the Z-down orientation

World Coordinate System

The 3D visualization environment uses a world coordinate system with axes that are fixed in the
inertial reference frame.

Z

Yaw

<O Rl oy

R

Axis Description
X Forward direction of the vehicle

Roll — Right-handed rotation about X-axis
Y Extends to the right of the vehicle, parallel to the ground plane

Pitch — Right-handed rotation about Y-axis
Z Extends upwards

Yaw — Left-handed rotation about Z-axis

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive
Engineers, 1992.

[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale,
PA: Society of Automotive Engineers, 2008.

[3] Technical Committee. Road vehicles — Vehicle dynamics and road-holding ability — Vocabulary.
ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.
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See Also

More About

. “Coordinate Systems in Automated Driving Toolbox” (Automated Driving Toolbox)

External Websites

. SAE International Standards
. ISO Standards
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3 Reference Applications

Passenger Vehicle Dynamics Models

3-2

To analyze the dynamic system response in common ride and handling maneuvers, Vehicle Dynamics

Blockset provides these pre-assembled vehicle dynamics models.

Vehicle |Description |Vehicle Body Degrees-of-Freedom Wheel DOFs
Model (DOFs)
Passenger|e Vehicle Six Two per wheel - eight total
14DOF with four
Vehicle wheels Translational Rotational Translational |Rotational
¢ Available as || Longitudinal v |Pitch v Vertical v |Rolling | v
mo‘,iel ) Lateral v  |Yaw v
variant in
the Vertical v [Roll 4
maneuver
reference
applications
Passenger|* Vehicle Three One per wheel - four total
7DOF with four
Vehicle wheels Translational Rotational Rotational
* Available as || Longitudinal v |Pitch Rolling v
model Lateral v |Yaw
variant in -
the Vertical Roll
maneuver
reference
applications
Passenger|e Vehicle Three None
3DOF with ideal
Vehicle tire Translational Rotational
Longitudinal v |Pitch
Lateral v |Yaw
Vertical Roll

From the Simulink start page, you can open project files that contain the vehicle models.




Passenger Vehicle Dynamics Models

4 Simulink Start Page — ]
New Examples
3 Open.. All Templates  w
Recent
P2 mymodel six > System Composer

i v \ehicle Dynamics Blockset
Projects

i@ From Source Control «

Passenger 3DOF Vehicle Passenger TDOF Vehicle

See Also
Vehicle Body 3DOF | Vehicle Body 6DOF

More About
. “Coordinate Systems in Vehicle Dynamics Blockset” on page 2-2
. “Vehicle Reference Applications”
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Double-Lane Change Maneuver

3-4

This reference application represents a full vehicle dynamics model undergoing a double-lane change
maneuver according to standard ISO 3888-2[!1. You can create your own versions, establishing a
framework to test that your vehicle meets the design requirements under normal and extreme driving
conditions. Use the reference application to analyze vehicle ride and handling and develop chassis
controls. To perform vehicle studies, including yaw stability and lateral acceleration limits, use this
reference application.

ISO 3888-2! defines the double-lane change maneuver to test the obstacle avoidance performance of
a vehicle. In the test, the driver:

» Accelerates until vehicle hits a target velocity

* Releases the accelerator pedal

* Turns steering wheel to follow path into the left lane

* Turns steering wheel to follow path back into the right lane

Typically, cones mark the lane boundaries. If the vehicle and driver can negotiate the maneuver
without hitting a cone, the vehicle passes the test.

To test advanced driver assistance systems (ADAS) and automated driving (AD) perception, planning,
and control software, you can run the maneuver in a 3D environment. For the 3D visualization engine
platform requirements and hardware recommendations, see “3D Visualization Engine Requirements
and Limitations” on page 8-6.

To create and open a working copy of the double-lane change reference application project, enter
vdynblksDblLaneChangeStart

This table summarizes the blocks and subsystems in the reference application. Some subsystems
contain variants.

Reference Application [Description Variants
Element
Lane Change Reference |Generates lane signals for the visualization subsystem and
Generator trajectory signals
Driver Commands Implements the driver model that the reference application v
uses to generate acceleration, braking, gear, and steering
commands.

By default, Driver Commands subsystem variant is the
Predictive Driver block.

Environment Implements wind and ground forces v
Controllers Implements controllers for engine control units (ECUs), v
transmissions, brakes, and active differentials
Passenger Vehicle Implements the: v

* Body, suspension, and wheels
* Engine

» Steering, transmission, driveline, and brakes



matlab:vdynblksDblLaneChangeStart

Double-Lane Change Maneuver

Reference Application [Description Variants

Element

Visualization Provides the vehicle trajectory, driver response, and 3D v
visualization

To override the default variant, on the Modeling tab, in the Design section, click the drop-down. In
the General section, select Variant Manager. In the Variant Manager, navigate to the variant that
you want to use. Right-click and select Override using this Choice.

Lane Change Reference Generator

Use the Lane Change Reference Generator block to generate:

* Lane signals for the Visualization subsystem — The left and right lane boundaries are a function of
the Vehicle width parameter.

* Velocity and lateral reference signals for the Predictive Driver block — Use the Lateral reference
position breakpoints and Lateral reference data parameters to specify the lateral reference
trajectory as a function of the longitudinal distance.

To specify the target velocity, use the Longitudinal entrance velocity setpoint parameter.

Driver Commands

The Driver Commands block implements the driver model that the reference application uses to
generate acceleration, braking, gear, and steering commands. By default, if you select the Reference
Generator block parameter Use maneuver-specific driver, initial position, and scene, the
reference application selects the driver for the maneuver that you specified.

Vehicle Command Implementation
Mode Setting

Longitudinal Driver |Longitudinal Driver block — Longitudinal speed-tracking controller. Based
on reference and feedback velocities, the block generates normalized
acceleration and braking commands that can vary from 0 through 1. Use
the block to model the dynamic response of a driver or to generate the
commands necessary to track a longitudinal drive cycle.

Predictive Driver Predictive Driver block — Controller that generates normalized steering,
acceleration, and braking commands to track longitudinal velocity and a
lateral reference displacement. The normalized commands can vary
between -1 to 1. The controller uses a single-track (bicycle) model for
optimal single-point preview control.

Open Loop Implements an open-loop system so that you can configure the reference
application for constant or signal-based steering, acceleration, braking,
and gear command input.

Environment

The Environment subsystem generates the wind and ground forces. The reference application has
these environment variants.
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Environment Variant Description
Ground Feedback 3D Engine Uses Vehicle Terrain Sensor block to implement
ray tracing in 3D environment
Constant (default) |[Implements a constant friction value
Controllers

The Controllers subsystem generates engine torque, transmission gear, brake pressure, and
differential pressure commands.

ECU

The ECU controller generates the engine torque command. The controller prevents over-revving the
engine by limiting the engine torque command to the value specified by model workspace variable

EngRevLim. By default, the value is 7000 rpm. If the differential torque command exceeds the limited
engine torque command, the ECU sets the engine torque command to the commanded differential

torque.

Transmission Controller

The Transmission Controller subsystem generates the transmission gear command. The controller

includes these variants.

Variant Description
Transmission Implements a transmission control module (TCM) that uses Stateflow
Controller logic to generate the gear command based on the vehicle

acceleration, wheel speed, and engine speed.

Driver - No Clutch

Open loop transmission control. The controller sets the gear
command to the gear request.

PRNDL Controller
(default)

Implements a transmission control module (TCM) that uses Stateflow
logic to generate the gear command based on the vehicle
acceleration, brake command, wheel speed, engine speed, and gear
request.

Paddles

Implements a paddle controller that uses the vehicle acceleration and
engine speed to generate the gear command.

Brake Controller

The Brake Controller subsystem implements a Brake Pressure Control subsystem to generate the
brake pressure command. The Brake Pressure Control subsystem has these variants.

Variant

Description

Bang Bang ABS

Implements an anti-lock braking system (ABS) feedback controller
that switches between two states to regulate wheel slip. The bang-
bang control minimizes the error between the actual slip and desired
slip. For the desired slip, the controller uses the slip value at which
the mu-slip curve reaches a peak value. This desired slip value is
optimal for minimum braking distance.
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Variant Description

Open Loop (default) Open loop brake control. The controller sets the brake pressure
command to a reference brake pressure based on the brake
command.

Active Differential Control

The Active Differential Control subsystem generates the differential pressure command. To calculate
the command, the subsystem has these variants.

Variant Description

Rear Diff Controller Implements a controller that generates the differential pressure
command based on the:

* Steer angle

* Vehicle pitch, yaw, and roll

* Brake command

*  Wheel speed

* Gear

* Vehicle acceleration

No Control (default) Does not implement a controller. Sets the differential pressure
command to 0.

Passenger Vehicle

The Passenger Vehicle subsystem has an engine, controllers, and a vehicle body with four wheels.
Specifically, the vehicle contains these subsystems.

Body, Suspension, Variant Description
Wheels Subsystem
PassVeh7DOF PassVeh7DOF Vehicle with four wheels:

* Vehicle body has three degrees-of-freedom
(DOFs) — Longitudinal, lateral, and yaw

* Each wheel has one DOF — Rolling

PassVeh14DOF PassVeh14DOF Vehicle with four wheels.
(default)

* Vehicle body has six DOFs — Longitudinal,
lateral, vertical and pitch, yaw, and roll

¢ Each wheel has two DOFs — Vertical and

rolling
Engine Subsystem Variant Description
Mapped Engine SiMappedEngine Mapped spark-ignition (SI) engine

(default)
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Steering, Transmission, |Variant Description
Driveline, and Brakes
Subsystem
Driveline |Driveline All Wheel Drive |[Configure the driveline for all-wheel, front-wheel,
Ideal Fixed |[model EronTnnaal or regr—wheel drive and specify the type of torque
Gear Bl coupling.
Rear Wheel Drive
(default)
Transmission |Ideal (default) Implements an ideal fixed gear transmission.
Brake NA Implements the heuristic response of a hydraulic
Hydraulics system when the controller applies a brake
command to a cylinder. The subsystem converts
the applied pressure to a cylinder spool position.
To generate the brake pressure, the spool applies
a flow downstream to the cylinders.
Visualization

When you run the simulation, the Visualization subsystem provides driver, vehicle, and response
information. The reference application logs vehicle signals during the maneuver, including steering,
vehicle and engine speed, and lateral acceleration. You can use the Simulation Data Inspector to

import the logged signals and examine the data.
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3D Engine
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IS0 15037-1:2006
= it
IS0 15037-1: 2006
Disablad
Element Description

Driver Commands

Driver commands:

* Handwheel angle
¢ Acceleration command
¢ Brake command

Vehicle Response

Vehicle response:

* Engine speed
* Vehicle speed
¢ Acceleration command
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Element

Description

Lane Change Scope block

Lateral vehicle displacement versus time:

* Red line — Cones marking lane boundary
* Blue line — Reference trajectory
* Green line — Actual trajectory

Steer vs Ay Scope block

Steering angle versus lateral acceleration

Steer, Velocity, Lat Accel

* SteerAngle — Steering angle versus time

Scope block + <xdot> — Longitudinal vehicle velocity versus time
* <ay> — Lateral acceleration versus time
Vehicle XY Plotter Vehicle longitudinal versus lateral distance

ISO 15037-1:2006 block

Display ISO standard measurement signals in the Simulation Data
Inspector, including steering wheel angle and torque, longitudinal and
lateral velocity, and sideslip angle

3D Visualization

Optionally, you can enable or disable the 3D visualization environment. For the 3D visualization
engine platform requirements and hardware recommendations, see “3D Visualization Engine
Requirements and Limitations” on page 8-6. After you open the reference application, in the
Visualization subsystem, open the 3D Engine block. Set these parameters.

* 3D Engine to Enabled.

* Scene to one of the scenes, for example Straight road.

3D Engine
() Enabled
(® Disabled

Scene:

Engine 1 curved road

Initial Parking lot

Open surface

=

Double lane change

Double lane change

* To position the vehicle in the scene:

1  Select the position initialization method:

* Recommended for scene — Set the initial vehicle position to values recommended for

the scene

* User-specified — Set your own initial vehicle position

2 (Click Update the model workspaces with the initial values to overwrite the initial vehicle

position in the model workspaces with the applied values.

When you run the simulation, view the vehicle response in the AutoVrt1lEnv window.
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Note

* To open and close the AutoVrt1lEnv window, use the Simulink Run and Stop buttons. If you
manually close the AutoVrt1lEnv window, Simulink stops the simulation with an error.

* When you enable the 3D visualization environment, you cannot step the simulation back.

To smoothly change the camera views, use these key commands.

Camera View
Back left
Back

Back right
Left

Internal

Right

Front left
Front

A
<

Front right
Overhead

Ol O| 0| IOl Bl W| N -

For additional camera controls, use these key commands.
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Key

Camera Control

Tab

Cycle the view between all vehicles in the scene.

View Animated GIF

Mouse scroll wheel

Control the camera distance from the vehicle.

View Animated GIF

T em—— I

o
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Key

Camera Control

Toggle a camera lag effect on or off. When you enable the lag effect, the
camera view includes:

» Position lag, based on the vehicle translational acceleration
* Rotation lag, based on the vehicle rotational velocity

This lag enables improved visualization of overall vehicle acceleration and
rotation.

View Animated GIF

Toggle the free camera mode on or off. When you enable the free camera
mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the vehicle.

View Animated GIF

References

[1]1ISO 3888-2: 2011. Passenger cars — Test track for a severe lane-change manoeuvre.
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See Also
3D Engine | Mapped SI Engine | Predictive Driver | Vehicle Terrain Sensor

Related Examples

“Send and Receive Double-Lane Change Scene Data” on page 3-71
“Yaw Stability on Varying Road Surfaces” on page 1-16

More About

“3D Visualization Engine Requirements and Limitations” on page 8-6
“Coordinate Systems in Vehicle Dynamics Blockset” on page 2-2
“ISO 15037-1:2006 Standard Measurement Signals” on page 5-2
“Passenger Vehicle Dynamics Models” on page 3-2

“Send and Receive Double-Lane Change Scene Data” on page 3-71
Simulation Data Inspector



Scene Interrogation in 3D Environment

Scene Interrogation in 3D Environment

The scene interrogation with camera and ray tracing reference application provides the Simulink
interface with the 3D visualization environment. For the minimum hardware required to run the
reference application, see “3D Visualization Engine Requirements and Limitations” on page 8-6.

The scene interrogation with camera and ray tracing reference application contains:

* One passenger vehicle with a simple driveline and a 3DOF vehicle dynamics model.
* One camera mounted on the passenger vehicle rearview mirror.

» Steering, acceleration, and braking control dials.

» 3D visualization environment configured for the Virtual Mcity scene.

Create and open a working copy of the camera and ray tracing reference application project.

vdynblksSceneCameraRayStart

Controls o M Dynamics and Controls Displays
.
-30 30
i |
R —{sD
- - < LS o
l:'_’ HidWhi FroVi A N
Gear:Value 1 ! Info ki - —_
-60 60 Bioar »| WhiingF 7 \ == .___f—} 3]
> ! i xdot-e—] A
. Steering = | aw
-80 an LAeEs, Sl |' ' yelot [-—] | E==
Acgy
O o e =
T S =
N T R T R AT
R v I 1 =pbs
- "‘ Tiarva - ehFdbk RearF FwR l
Accelerator:vValue /s FzR |-+ Y
O O T T AT Powertrain & Driveline Vehicle Body 3D0OF Dual Track Help
0. 4 0 0.
BrakeValue
Simulation 3D Scene Configuration
Sensors
Translation - Translation
Ratation # Rotation
Scale ) Scale
Simulation 30 Actor Transform Get TransformDisplay
Simulation 3D Camera Get ImageDisplay

When you run the simulation, the reference application provides this vehicle and scene information.
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Window Description

AutoVrtlEnv |Video output of the Unreal Engine® 3D visualization environment image feedback. By
default, the display shows the view from the Simulation 3D Scene Configuration block
Scene view parameter SimulinkVehiclel.

To smoothly change the camera views, use these key commands.

Key Camera View
Back left
Back

Back right
Left
Internal
Right
Front left
Front

Front right
Overhead

S|l Ol || Ul kx|l w| N -

View Animated GIF

B o R T

For additional camera controls, use these key commands.

Key Camera Control

Tab Cycle the view between all vehicles in the scene.
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Window Description

Key Camera Control
View Animated GIF

Mouse scroll wheel |[Control the camera distance from the vehicle.

View Animated GIF

L Toggle a camera lag effect on or off. When you enable the lag
effect, the camera view includes:

» Position lag, based on the vehicle translational acceleration
* Rotation lag, based on the vehicle rotational velocity

This lag enables improved visualization of overall vehicle
acceleration and rotation.
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Window Description
Key Camera Control
View Animated GIF
- G =
F Toggle the free camera mode on or off. When you enable the

free camera mode, you can use the mouse to change the pitch
and yaw of the camera. This mode enables you to orbit the
camera around the vehicle.

View Animated GIF

SDL Video |Video image output of Simulation 3D Camera Get block. By default, the display shows
Display the view specified by these parameter settings:

* Vehicle name — SimulinkVehiclel
* Vehicle mounting location — Rearview mirror

This table summarizes the parts of the reference application.

Name Description

Controls Dials and gauges that control the vehicle steering, gear, acceleration, and braking.
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Name

Description

Sensors

The Simulation 3D Actor Transform Get block returns the translation, rotation, and
scale for the vehicle passenger vehicle and four wheels from the 3D visualization
environment.

The Simulation 3D Camera Get block returns the camera image from the 3D
visualization environment. By default, the block returns image data for a camera
location specified by these parameter settings:

* Vehicle name — SimulinkVehiclel

* Vehicle mounting location — Rearview mirror

Dynamics
and Controls

Interfaces with Simulink to calculate the dynamic response of the vehicle plant and
controller. By default, the subsystem contains a simple driveline and the Vehicle 3DOF
Dual Track block vehicle dynamics model.

Displays

The Simulation 3D Vehicle with Ground Following block implements a passenger
vehicle in the 3D visualization environment. The block uses the vehicle position to
adjust the vehicle elevation, roll, and pitch so that the vehicle follows the ground
terrain. By default, the block has these parameter settings:

* Type — Muscle car

* Color — Red

* Name — SimulinkVehiclel

The Simulation 3D Scene Configuration block configures the Unreal Engine 3D
visualization environment. By default, the block has these parameter settings:

* Scene name — Virtual Mcity
* Scene view — SimulinkVehiclel

The TransformDisplay subsystem displays the translation, rotation, and scale of the
SimulinkVehiclel vehicle body and four wheels.

The ImageDisplay subsystem displays the video image output of Simulation 3D
Camera Get block in the SDL Video Display window.

Displays Subsystems

TransformDisplay Subsystem

In the TransformDisplay subsystem, the Display block provides the translation, rotation, and scale of
the vehicle body and four wheels. Use the Constant block value to control the display.

¢ 1 — Translation

e 2 — Rotation

e 3 — Scale

For example, to display translation information, set the value to 1.
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Displays
)t
\ -212.5| 65.66)| 0.0112]
i t \ ol o] 9
Translate b ]\Eal ‘ OH OH 0|
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3 Led ]
[5x3]
Scale —
Multiport
Switch

The display indicates that the:

* Vehicle body is at -212.5m, 65.66 m, and 0.0112 m along the world X-, Y-, and Z- axes,
respectively.

* Wheels are at their initial positions along the world X-, Y-, and Z- axes, respectively.

The Display block provides an array of the vehicle and wheel locations.

Vehiclex Vehicley Vehicley
FrontLefty FrontLefty FrontLefty
FrontRighty FrontRighty FrontRight,
RearLefty RearLefty RearLefty
RearReary RearReary RearRearz

* Vehicle translation and rotation are along the world coordinate system axes.

* Wheel translations and rotations are with respect to their initial positions, along the world
coordinate system axes.

ImageDisplay Subsystem
In the ImageDisplay subsystem, the Level-2 MATLAB S-Function block uses the

VideoDisplayMSfcnWin function to display the video image output of Simulation 3D Camera Get
block.

See Also
Simulation 3D Actor Transform Get | Simulation 3D Camera Get | Simulation 3D Scene Configuration
| Simulation 3D Vehicle with Ground Following | Virtual Mcity

Related Examples

. “Send and Receive Double-Lane Change Scene Data” on page 3-71
More About

. “Coordinate Systems in Vehicle Dynamics Blockset” on page 2-2

. “Customize 3D Scenes for Vehicle Dynamics Simulations” on page 6-3



Scene Interrogation in 3D Environment

. “How 3D Simulation for Vehicle Dynamics Blockset Works” on page 8-8

External Websites
. Unreal Engine
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Swept-Sine Steering Maneuver
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This reference application represents a full vehicle dynamics model undergoing a swept-sine steering
maneuver. You can create your own versions, providing a framework to test that your vehicle meets
the design requirements under normal and extreme driving conditions. Use the reference application
to analyze vehicle ride and handling and develop chassis controls. To analyze the dynamic steering
response, use this reference application.

The swept-sine steering maneuver tests the vehicle frequency response to steering inputs. In the test,
the driver:

* Accelerates until the vehicle hits a target velocity.

* Commands a sinusoidal steering wheel input.

» Linearly increase the frequency of the sinusoidal wave.

To test advanced driver assistance systems (ADAS) and automated driving (AD) perception, planning,
and control software, you can run the maneuver in a 3D environment. For the 3D visualization engine

platform requirements and hardware recommendations, see “3D Visualization Engine Requirements
and Limitations” on page 8-6.

To create and open a working copy of the swept-sine steering reference application project, enter
vdynblksSweptSineSteeringStart

This table summarizes the blocks and subsystems in the reference application. Some subsystems
contain variants.

Reference Application [Description Variants
Element
Swept Sine Reference |Generate the sinusoidal steering commands for a swept-sine
Generator block steering maneuver.
Driver Commands Implements the driver model that the reference application v
uses to generate acceleration, braking, gear, and steering
commands.

By default, Driver Commands subsystem variant is the
Predictive Driver block.

Environment Implements wind and road forces. v
Controllers Implements controllers for engine control units (ECUs), v
transmissions, brakes, and active differentials.

Passenger Vehicle Implements the: v

* Body, suspension, and wheels
* Engine
» Steering, transmission, driveline, and brakes
Visualization Provides the vehicle trajectory, driver response, and 3D v

visualization.
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Swept-Sine Steering Maneuver

To override the default variant, on the Modeling tab, in the Design section, click the drop-down. In
the General section, select Variant Manager. In the Variant Manager, navigate to the variant that
you want to use. Right-click and select Override using this Choice.

Swept Sine Reference Generator

Use the Swept Sine Reference block to generate the sinusoidal steering commands for a swept-sine
steering maneuver.

* Longitudinal velocity setpoint — Target velocity

* Steering amplitude — Sinusoidal wave amplitude

* Final frequency — Cut off frequency to stop the maneuver

Driver Commands

The Driver Commands block implements the driver model that the reference application uses to
generate acceleration, braking, gear, and steering commands. By default, if you select the Reference
Generator block parameter Use maneuver-specific driver, initial position, and scene, the
reference application selects the driver for the maneuver that you specified.

Vehicle Command Implementation
Mode Setting

Longitudinal Driver |Longitudinal Driver block — Longitudinal speed-tracking controller. Based
on reference and feedback velocities, the block generates normalized
acceleration and braking commands that can vary from 0 through 1. Use
the block to model the dynamic response of a driver or to generate the
commands necessary to track a longitudinal drive cycle.

Predictive Driver Predictive Driver block — Controller that generates normalized steering,
acceleration, and braking commands to track longitudinal velocity and a
lateral reference displacement. The normalized commands can vary
between -1 to 1. The controller uses a single-track (bicycle) model for
optimal single-point preview control.

Open Loop Implements an open-loop system so that you can configure the reference
application for constant or signal-based steering, acceleration, braking,
and gear command input.

Environment

The Environment subsystem generates the wind and ground forces. The reference application has
these environment variants.

Environment Variant Description

Ground Feedback 3D Engine Uses Vehicle Terrain Sensor block to implement
ray tracing in 3D environment

Constant (default) |[Implements a constant friction value
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Controllers

The Controllers subsystem generates engine torque, transmission gear, brake pressure, and
differential pressure commands.

ECU

The ECU controller generates the engine torque command. The controller prevents over-revving the
engine by limiting the engine torque command to the value specified by model workspace variable
EngRevLim. By default, the value is 7000 rpm. If the differential torque command exceeds the limited
engine torque command, the ECU sets the engine torque command to the commanded differential

torque.
Transmission Controller

The Transmission Controller subsystem generates the transmission gear command. The controller
includes these variants.

Variant Description

Transmission Implements a transmission control module (TCM) that uses Stateflow

Controller logic to generate the gear command based on the vehicle
acceleration, wheel speed, and engine speed.

Driver - No Clutch Open loop transmission control. The controller sets the gear
command to the gear request.

PRNDL Controller Implements a transmission control module (TCM) that uses Stateflow

(default) logic to generate the gear command based on the vehicle
acceleration, brake command, wheel speed, engine speed, and gear
request.

Paddles Implements a paddle controller that uses the vehicle acceleration and

engine speed to generate the gear command.

Brake Controller

The Brake Controller subsystem implements a Brake Pressure Control subsystem to generate the
brake pressure command. The Brake Pressure Control subsystem has these variants.

Variant Description

Bang Bang ABS Implements an anti-lock braking system (ABS) feedback controller
that switches between two states to regulate wheel slip. The bang-
bang control minimizes the error between the actual slip and desired
slip. For the desired slip, the controller uses the slip value at which
the mu-slip curve reaches a peak value. This desired slip value is
optimal for minimum braking distance.

Open Loop (default) Open loop brake control. The controller sets the brake pressure
command to a reference brake pressure based on the brake
command.

Active Differential Control

The Active Differential Control subsystem generates the differential pressure command. To calculate
the command, the subsystem has these variants.
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Variant

Description

Rear Diff Controller

* Steer angle

*  Wheel speed
* Gear

Implements a controller that generates the differential pressure
command based on the:

* Vehicle pitch, yaw, and roll
* Brake command

* Vehicle acceleration

No Control (default)

command to 0.

Does not implement a controller. Sets the differential pressure

Passenger Vehicle

The Passenger Vehicle subsystem has an engine, controllers, and a vehicle body with four wheels.
Specifically, the vehicle contains these subsystems.

Subsystem

Driveline, and Brakes

Body, Suspension, Variant Description
Wheels Subsystem
PassVeh7DOF PassVeh7DOF Vehicle with four wheels:
* Vehicle body has three degrees-of-freedom
(DOFs) — Longitudinal, lateral, and yaw
* Each wheel has one DOF — Rolling
PassVeh14DOF PassVeh14DOF Vehicle with four wheels.
(default) . _ o
* Vehicle body has six DOFs — Longitudinal,
lateral, vertical and pitch, yaw, and roll
* Each wheel has two DOFs — Vertical and
rolling
Engine Subsystem Variant Description
Mapped Engine SiMappedEngine Mapped spark-ignition (SI) engine
(default)
Steering, Transmission, |Variant Description

Driveline |Driveline
Ideal Fixed |model
Gear

All Wheel Drive

Front Wheel
Drive

Rear Wheel Drive
(default)

Configure the driveline for all-wheel, front-wheel,
or rear-wheel drive and specify the type of torque
coupling.

Transmission

Ideal (default)

Implements an ideal fixed gear transmission.
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Steering, Transmission, |Variant Description

Driveline, and Brakes

Subsystem
Brake NA Implements the heuristic response of a hydraulic
Hydraulics system when the controller applies a brake

command to a cylinder. The subsystem converts
the applied pressure to a cylinder spool position.
To generate the brake pressure, the spool applies
a flow downstream to the cylinders.

Visualization Subsystem

When you run the simulation, the Visualization subsystem provides driver, vehicle, and response
information. The reference application logs vehicle signals during the maneuver, including steering,
vehicle and engine speed, and lateral acceleration. You can use the Simulation Data Inspector to
import the logged signals and examine the data.
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Swept-Sine Steering Maneuver

Element

Description

Driver Commands

Driver commands:

* Handwheel angle
e Acceleration command
¢ Brake command

Vehicle Response

Vehicle response:

* Engine speed
* Vehicle speed
e Acceleration command

Yaw Rate and Steer Scope
block

Yaw rate and steering angle versus time:

* Yellow line — Yaw rate
* Blue lines — Steering angle

Steer vs Ay Scope block

Steering angle versus lateral acceleration

Steer, Velocity, Lat Accel
Scope block

* SteerAngle — Steering angle versus time
* <xdot> — Longitudinal vehicle velocity versus time
* <ay> — Lateral acceleration versus time

Vehicle XY Plotter

Plot of vehicle longitudinal versus lateral distance

ISO 15037-1:2006 block

Display ISO standard measurement signals in the Simulation Data
Inspector, including steering wheel angle and torque, longitudinal and
lateral velocity, and sideslip angle

3D Visualization

Optionally, you can enable or disable the 3D visualization environment. For the 3D visualization
engine platform requirements and hardware recommendations, see “3D Visualization Engine
Requirements and Limitations” on page 8-6. After you open the reference application, in the
Visualization subsystem, open the 3D Engine block. Set these parameters.

* 3D Engine to Enabled.

* Scene to one of the scenes, for example Straight road.

3D Engine
() Enabled
(® Disabled

Scene:

Engine 1 curved road

Initial Parking lot

Open surface

P N

Double lane change

Double lane change

» To position the vehicle in the scene:
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1 Select the position initialization method:
* Recommended for scene — Set the initial vehicle position to values recommended for
the scene
* User-specified — Set your own initial vehicle position
2 (Click Update the model workspaces with the initial values to overwrite the initial vehicle
position in the model workspaces with the applied values.

When you run the simulation, view the vehicle response in the AutoVrt1Env window.

Note

* To open and close the AutoVrtlEnv window, use the Simulink Run and Stop buttons. If you
manually close the AutoVrtlEnv window, Simulink stops the simulation with an error.

*  When you enable the 3D visualization environment, you cannot step the simulation back.

To smoothly change the camera views, use these key commands.

Key Camera View

Back left

Back

Back right

Left

Internal

Right

Front left

Front

OO IO B WN|—

Front right




Swept-Sine Steering Maneuver

Key

Camera View

Overhead

View Animated GIF

For additional camera controls, use these key commands.

Key

Camera Control

Tab

Cycle the view between all vehicles in the scene.

View Animated GIF
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Key

Camera Control

Mouse scroll wheel

Control the camera distance from the vehicle.

View Animated GIF

Toggle a camera lag effect on or off. When you enable the lag effect, the
camera view includes:

» Position lag, based on the vehicle translational acceleration
* Rotation lag, based on the vehicle rotational velocity

This lag enables improved visualization of overall vehicle acceleration and
rotation.

View Animated GIF




Swept-Sine Steering Maneuver

Key Camera Control

F Toggle the free camera mode on or off. When you enable the free camera
mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the vehicle.
View Animated GIF

See Also

3D Engine | Longitudinal Driver | Mapped SI Engine | Vehicle Terrain Sensor

Related Examples

“Frequency Response to Steering Angle Input” on page 1-49

More About

(]

“3D Visualization Engine Requirements and Limitations” on page 8-6
“Coordinate Systems in Vehicle Dynamics Blockset” on page 2-2
“ISO 15037-1:2006 Standard Measurement Signals” on page 5-2
“Passenger Vehicle Dynamics Models” on page 3-2

Simulation Data Inspector
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Slowly Increasing Steering Maneuver
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This reference application represents a full vehicle dynamics model undergoing a slowly increasing
steering maneuver according to standard SAE J266!). You can create your own versions, establishing
a framework to test that your vehicle meets the design requirements under normal and extreme
driving conditions. Use the reference application to analyze vehicle ride and handling and develop
chassis controls. To characterize the steering and lateral vehicle dynamics, use this reference
application.

Based on the constant speed, variable steer test defined in SAE J266!, the slowly increasing steering
maneuver helps characterize the lateral dynamics of the vehicle. In the test, the driver:

* Accelerates until vehicle hits a target velocity.

* Maintains a target velocity.

* Linearly increases the steering wheel angle from 0 degrees to a maximum angle.

* Maintains the steering wheel angle for a specified time.

* Linearly decreases the steering wheel angle from maximum angle to O degrees.

To test advanced driver assistance systems (ADAS) and automated driving (AD) perception, planning,
and control software, you can run the maneuver in a 3D environment. For the 3D visualization engine
platform requirements and hardware recommendations, see “3D Visualization Engine Requirements
and Limitations” on page 8-6.

To create and open a working copy of the increasing steering reference application project, enter
vdynblksIncreasingSteeringStart

This table summarizes the blocks and subsystems in the reference application. Some subsystems
contain variants.

Reference Application [Description Variants
Element

Slowly Increasing Steer |Generates steering, accelerator, and brake commands.
block

Driver Commands Implements the driver model that the reference application v
uses to generate acceleration, braking, gear, and steering
commands.

By default, Driver Commands subsystem variant is the
Predictive Driver block.

Environment Implements wind and road forces. v

Controllers Implements controllers for engine control units (ECUs), v
transmissions, brakes, and active differentials.

Passenger Vehicle Implements the: v

* Body, suspension, and wheels
* Engine

» Steering, transmission, driveline, and brakes
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Slowly Increasing Steering Maneuver

Reference Application [Description Variants

Element

Visualization Provides the vehicle trajectory, driver response, and 3D v
visualization

To override the default variant, on the Modeling tab, in the Design section, click the drop-down. In
the General section, select Variant Manager. In the Variant Manager, navigate to the variant that
you want to use. Right-click and select Override using this Choice.

Slowly Increasing Steer Block

Use the Slowly Increasing Steering block to generate steering, accelerator, and brake commands for
a slowly increasing steering maneuver!!!,

* Longitudinal speed setpoint — Target velocity setpoint

* Handwheel rate — Linear rate to increase steering wheel angle

* Maximum handwheel angle — Maximum steering wheel angle

Driver Commands

The Driver Commands block implements the driver model that the reference application uses to
generate acceleration, braking, gear, and steering commands. By default, if you select the Reference
Generator block parameter Use maneuver-specific driver, initial position, and scene, the
reference application selects the driver for the maneuver that you specified.

Vehicle Command Implementation
Mode Setting

Longitudinal Driver |Longitudinal Driver block — Longitudinal speed-tracking controller. Based
on reference and feedback velocities, the block generates normalized
acceleration and braking commands that can vary from 0 through 1. Use
the block to model the dynamic response of a driver or to generate the
commands necessary to track a longitudinal drive cycle.

Predictive Driver |Predictive Driver block — Controller that generates normalized steering,
acceleration, and braking commands to track longitudinal velocity and a
lateral reference displacement. The normalized commands can vary
between -1 to 1. The controller uses a single-track (bicycle) model for
optimal single-point preview control.

Open Loop Implements an open-loop system so that you can configure the reference
application for constant or signal-based steering, acceleration, braking,
and gear command input.

Environment

The Environment subsystem generates the wind and ground forces. The reference application has
these environment variants.
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Environment Variant Description

Ground Feedback 3D Engine Uses Vehicle Terrain Sensor block to implement
ray tracing in 3D environment

Constant (default) |[Implements a constant friction value

Controllers

The Controllers subsystem generates engine torque, transmission gear, brake pressure, and
differential pressure commands.

ECU

The ECU controller generates the engine torque command. The controller prevents over-revving the
engine by limiting the engine torque command to the value specified by model workspace variable
EngRevLim. By default, the value is 7000 rpm. If the differential torque command exceeds the limited
engine torque command, the ECU sets the engine torque command to the commanded differential
torque.

Transmission Controller

The Transmission Controller subsystem generates the transmission gear command. The controller
includes these variants.

Variant Description

Transmission Implements a transmission control module (TCM) that uses Stateflow

Controller logic to generate the gear command based on the vehicle
acceleration, wheel speed, and engine speed.

Driver - No Clutch Open loop transmission control. The controller sets the gear
command to the gear request.

PRNDL Controller Implements a transmission control module (TCM) that uses Stateflow

(default) logic to generate the gear command based on the vehicle
acceleration, brake command, wheel speed, engine speed, and gear
request.

Paddles Implements a paddle controller that uses the vehicle acceleration and

engine speed to generate the gear command.

Brake Controller

The Brake Controller subsystem implements a Brake Pressure Control subsystem to generate the
brake pressure command. The Brake Pressure Control subsystem has these variants.

Variant Description

Bang Bang ABS Implements an anti-lock braking system (ABS) feedback controller
that switches between two states to regulate wheel slip. The bang-
bang control minimizes the error between the actual slip and desired
slip. For the desired slip, the controller uses the slip value at which
the mu-slip curve reaches a peak value. This desired slip value is
optimal for minimum braking distance.
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Variant Description

Open Loop (default) Open loop brake control. The controller sets the brake pressure
command to a reference brake pressure based on the brake
command.

Active Differential Control

The Active Differential Control subsystem generates the differential pressure command. To calculate
the command, the subsystem has these variants.

Variant Description

Rear Diff Controller Implements a controller that generates the differential pressure
command based on the:

* Steer angle

* Vehicle pitch, yaw, and roll

* Brake command

*  Wheel speed

* Gear

* Vehicle acceleration

No Control (default) Does not implement a controller. Sets the differential pressure
command to 0.

Passenger Vehicle

The Passenger Vehicle subsystem has an engine, controllers, and a vehicle body with four wheels.
Specifically, the vehicle contains these subsystems.

Body, Suspension, Variant Description
Wheels Subsystem
PassVeh7DOF PassVeh7DOF Vehicle with four wheels:

* Vehicle body has three degrees-of-freedom
(DOFs) — Longitudinal, lateral, and yaw

* Each wheel has one DOF — Rolling

PassVeh14DOF PassVeh14DOF Vehicle with four wheels.
(default)

* Vehicle body has six DOFs — Longitudinal,
lateral, vertical and pitch, yaw, and roll

¢ Each wheel has two DOFs — Vertical and

rolling
Engine Subsystem Variant Description
Mapped Engine SiMappedEngine Mapped spark-ignition (SI) engine

(default)
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Steering, Transmission, |Variant Description
Driveline, and Brakes
Subsystem
Driveline |Driveline All Wheel Drive |[Configure the driveline for all-wheel, front-wheel,
Ideal Fixed |[model EronTnnaal or regr—wheel drive and specify the type of torque
Gear Bl coupling.
Rear Wheel Drive
(default)
Transmission |Ideal (default) Implements an ideal fixed gear transmission.
Brake NA Implements the heuristic response of a hydraulic
Hydraulics system when the controller applies a brake
command to a cylinder. The subsystem converts
the applied pressure to a cylinder spool position.
To generate the brake pressure, the spool applies
a flow downstream to the cylinders.
Visualization

When you run the simulation, the Visualization subsystem provides driver, vehicle, and response
information. The reference application logs vehicle signals during the maneuver, including steering,
vehicle and engine speed, and lateral acceleration. You can use the Simulation Data Inspector to

import the logged signals and examine the data.




Slowly Increasing Steering Maneuver

] [deg's)
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Stear, Valocity, Lat Accal
P ehFdbk
vehFdbk il
Wahicle XY Plotter
AD Engine
| VahFe Disabled
150 15037-1:2006
I it
150 15037-1:2006
Disabled
Element Description

Driver Commands

Driver commands:

* Handwheel angle
¢ Acceleration command
¢ Brake command

Vehicle Response

Vehicle response:

* Engine speed
* Vehicle speed
* Acceleration command

Yaw Rate and Steer Scope

Yaw rate and steering angle versus time:

block
* Yellow line — Yaw rate
* Blue lines — Steering angle
Steer vs Ay Scope block |Steering angle versus lateral acceleration
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Element Description
Steer, Velocity, Lat Accel |¢ SteerAngle — Steering angle versus time
Scope block + <xdot> — Longitudinal vehicle velocity versus time

* <ay> — Lateral acceleration versus time

Vehicle XY Plotter Plot of vehicle longitudinal versus lateral distance

ISO 15037-1:2006 block |Display ISO standard measurement signals in the Simulation Data
Inspector, including steering wheel angle and torque, longitudinal and
lateral velocity, and sideslip angle

3D Visualization

Optionally, you can enable or disable the 3D visualization environment. For the 3D visualization
engine platform requirements and hardware recommendations, see “3D Visualization Engine
Requirements and Limitations” on page 8-6. After you open the reference application, in the
Visualization subsystem, open the 3D Engine block. Set these parameters.

* 3D Engine to Enabled.

* Scene to one of the scenes, for example Straight road.
3D Engine
() Enabled
@ Disabled

Scene: |Double lane change

Parking lot
Double lane change
Open surface

o

» To position the vehicle in the scene:
1 Select the position initialization method:

* Recommended for scene — Set the initial vehicle position to values recommended for
the scene

* User-specified — Set your own initial vehicle position

2 (Click Update the model workspaces with the initial values to overwrite the initial vehicle
position in the model workspaces with the applied values.

When you run the simulation, view the vehicle response in the AutoVrt1lEnv window.

Note

* To open and close the AutoVrt1lEnv window, use the Simulink Run and Stop buttons. If you
manually close the AutoVrtlEnv window, Simulink stops the simulation with an error.

*  When you enable the 3D visualization environment, you cannot step the simulation back.
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To smoothly change the camera views, use these key commands.

Key Camera View
Back left
Back

Back right
Left

Internal

Right

Front left
Front

Front right
Overhead

S|l Ol IOl W| N -

For additional camera controls, use these key commands.

3-39



3 Reference Applications

3-40

Key

Camera Control

Tab

Cycle the view between all vehicles in the scene.

View Animated GIF

Mouse scroll wheel

Control the camera distance from the vehicle.

View Animated GIF

T em—— I

o
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Key

Camera Control

Toggle a camera lag effect on or off. When you enable the lag effect, the
camera view includes:

» Position lag, based on the vehicle translational acceleration
* Rotation lag, based on the vehicle rotational velocity

This lag enables improved visualization of overall vehicle acceleration and
rotation.

View Animated GIF

Toggle the free camera mode on or off. When you enable the free camera
mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the vehicle.

View Animated GIF

References

[1]1 SAE J266. Steady-State Directional Control Test Procedures For Passenger Cars and Light Trucks.

Warrendale, PA: SAE International, 1996.
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See Also
3D Engine | Longitudinal Driver | Mapped SI Engine | Vehicle Terrain Sensor

Related Examples

“Vehicle Steering Gain at Different Speeds” on page 1-28

More About

“3D Visualization Engine Requirements and Limitations” on page 8-6
“Coordinate Systems in Vehicle Dynamics Blockset” on page 2-2
“ISO 15037-1:2006 Standard Measurement Signals” on page 5-2
“Passenger Vehicle Dynamics Models” on page 3-2

Simulation Data Inspector



Constant Radius Maneuver

Constant Radius Maneuver

This reference application represents a full vehicle dynamics model undergoing a constant radius test
maneuver. For information about similar maneuvers, see standards SAE J266 _199601\"! and ISO
4138:20121. You can create your own versions, establishing a framework to test that your vehicle
meets the design requirements under normal and extreme driving conditions. Use this reference
application in ride and handling studies and chassis controls development to characterize the
steering and lateral vehicle dynamics.

You can configure the reference application for open-loop and closed-loop tests:

* Open-loop — Maintain the target velocity and steering wheel angle to determine the lateral
acceleration, side-slip characteristics, and steering angles for specific accelerations and
subsequent test maneuvers. For the open-loop test, set the Reference Generator block Maneuver
parameter to Increasing Steer.

* Closed-loop — Use the predictive driver to maintain a prespecified turn radius at different
velocities for drivability and handling performance studies. For the closed-loop test, set the
Reference Generator block Maneuver parameter to Constant radius.

To create and open a working copy of the constant radius reference application, enter

vdynblksConstRadiusStart

This table summarizes the blocks and subsystems in the reference application. Some subsystems
contain variants.

Reference Application [Description Variants
Element

Reference Generator Sets the parameters that configure the maneuver and 3D v
block visualization environment. By default, the block is set for the

constant radius maneuver with the 3D simulation engine
environment disabled.

For the minimum 3D visualization environment hardware
requirements, see “3D Visualization Engine Requirements and
Limitations” on page 8-6.

To enable 3D visualization, on the 3D Engine tab, select
Enabled.

Driver Commands Implements the driver model that the reference application v
uses to generate acceleration, braking, gear, and steering
commands.

By default, Driver Commands subsystem variant is the
Predictive Driver block.

\

Environment Implements wind and road forces.

Controllers Implements controllers for engine control units (ECUs), v
transmissions, brakes, and active differentials.
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Reference Application [Description Variants
Element
Passenger Vehicle Implements the: v

* Body, suspension, and wheels
* Engine
» Steering, transmission, driveline, and brakes

Visualization Provides the vehicle trajectory and driver response v

To override the default variant, on the Modeling tab, in the Design section, click the drop-down. In
the General section, select Variant Manager. In the Variant Manager, navigate to the variant that
you want to use. Right-click and select Override using this Choice.

Reference Generator

The Reference Generator block sets the parameters that configure the maneuver and 3D simulation
environment. By default, the block is set for the constant radius maneuver with the 3D simulation
engine environment disabled.

Use the Maneuver parameter to specify the type of maneuver. You can specify the double lane
change, swept sine, sine with dwell, and slowly increasing maneuvers.

If you select the Use maneuver-specific driver, initial position, and scene parameter, the
reference application sets the driver, initial position, and scene for the maneuver that you specified.

For more information, see Reference Generator.

Driver Commands

The Driver Commands block implements the driver model that the reference application uses to
generate acceleration, braking, gear, and steering commands. By default, if you select the Reference
Generator block parameter Use maneuver-specific driver, initial position, and scene, the
reference application selects the driver for the maneuver that you specified.

Vehicle Command Implementation
Mode Setting

Longitudinal Driver |Longitudinal Driver block — Longitudinal speed-tracking controller. Based
on reference and feedback velocities, the block generates normalized
acceleration and braking commands that can vary from 0 through 1. Use
the block to model the dynamic response of a driver or to generate the
commands necessary to track a longitudinal drive cycle.

Predictive Driver |Predictive Driver block — Controller that generates normalized steering,
acceleration, and braking commands to track longitudinal velocity and a
lateral reference displacement. The normalized commands can vary
between -1 to 1. The controller uses a single-track (bicycle) model for
optimal single-point preview control.

Open Loop Implements an open-loop system so that you can configure the reference
application for constant or signal-based steering, acceleration, braking,

and gear command input.
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Environment

The Environment subsystem generates the wind and ground forces. The reference application has
these environment variants.

Environment Variant Description

Ground Feedback 3D Engine Uses Vehicle Terrain Sensor block to implement
ray tracing in 3D environment

Constant (default) |[Implements a constant friction value

Controllers

The Controllers subsystem generates engine torque, transmission gear, brake pressure, and
differential pressure commands.

ECU

The ECU controller generates the engine torque command. The controller prevents over-revving the
engine by limiting the engine torque command to the value specified by model workspace variable
EngRevLim. By default, the value is 7000 rpm. If the differential torque command exceeds the limited

engine torque command, the ECU sets the engine torque command to the commanded differential
torque.

Transmission Controller

The Transmission Controller subsystem generates the transmission gear command. The controller
includes these variants.

Variant Description

Transmission Implements a transmission control module (TCM) that uses Stateflow

Controller logic to generate the gear command based on the vehicle
acceleration, wheel speed, and engine speed.

Driver - No Clutch Open loop transmission control. The controller sets the gear
command to the gear request.

PRNDL Controller Implements a transmission control module (TCM) that uses Stateflow

(default) logic to generate the gear command based on the vehicle
acceleration, brake command, wheel speed, engine speed, and gear
request.

Paddles Implements a paddle controller that uses the vehicle acceleration and

engine speed to generate the gear command.

Brake Controller

The Brake Controller subsystem implements a Brake Pressure Control subsystem to generate the
brake pressure command. The Brake Pressure Control subsystem has these variants.
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Variant

Description

Bang Bang ABS

Implements an anti-lock braking system (ABS) feedback controller
that switches between two states to regulate wheel slip. The bang-
bang control minimizes the error between the actual slip and desired
slip. For the desired slip, the controller uses the slip value at which
the mu-slip curve reaches a peak value. This desired slip value is
optimal for minimum braking distance.

Open Loop (default)

Open loop brake control. The controller sets the brake pressure
command to a reference brake pressure based on the brake
command.

Active Differential Control

The Active Differential Control subsystem generates the differential pressure command. To calculate
the command, the subsystem has these variants.

Variant

Description

Rear Diff Controller

Implements a controller that generates the differential pressure
command based on the:

* Steer angle

* Vehicle pitch, yaw, and roll

* Brake command

*  Wheel speed

* Gear

* Vehicle acceleration

No Control (default)

Does not implement a controller. Sets the differential pressure
command to 0.

Passenger Vehicle

The Passenger Vehicle subsystem has an engine, controllers, and a vehicle body with four wheels.
Specifically, the vehicle contains these subsystems.

Wheels Subsystem

Body, Suspension, Variant Description

PassVeh7DOF PassVeh7DOF Vehicle with four wheels:

* Vehicle body has three degrees-of-freedom
(DOFs) — Longitudinal, lateral, and yaw

* Each wheel has one DOF — Rolling

PassVeh14DOF PassVeh14DOF Vehicle with four wheels.
(default)

* Vehicle body has six DOFs — Longitudinal,
lateral, vertical and pitch, yaw, and roll

¢ Each wheel has two DOFs — Vertical and
rolling
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Subsystem

Driveline, and Brakes

Engine Subsystem Variant Description

Mapped Engine SiMappedEngine Mapped spark-ignition (SI) engine
(default)

Steering, Transmission, |Variant Description

Driveline |Driveline
Ideal Fixed |model
Gear

All Wheel Drive

Front Wheel
Drive

Rear Wheel Drive
(default)

Configure the driveline for all-wheel, front-wheel,
or rear-wheel drive and specify the type of torque
coupling.

Transmission |Ideal (default) Implements an ideal fixed gear transmission.
Brake NA Implements the heuristic response of a hydraulic
Hydraulics system when the controller applies a brake
command to a cylinder. The subsystem converts
the applied pressure to a cylinder spool position.
To generate the brake pressure, the spool applies
a flow downstream to the cylinders.
Visualization

When you run the simulation, the Visualization subsystem provides driver, vehicle, and response
information. The reference application logs vehicle signals during the maneuver, including steering,
vehicle and engine speed, and lateral acceleration. You can use the Simulation Data Inspector to
import the logged signals and examine the data.
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Element Description

Driver Commands

Driver commands:

* Handwheel angle
¢ Acceleration command
* Brake command

Vehicle Response

Vehicle response:

* Engine speed
* Vehicle speed
¢ Acceleration command

Steer, Velocity, Lat Accel
Scope block

* SteerAngle — Steering angle versus time
* <xdot> — Longitudinal vehicle velocity versus time
* <ay> — Lateral acceleration versus time

Vehicle XY Plotter

Vehicle longitudinal versus lateral distance
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Element Description

ISO 15037-1:2006 block |Display ISO standard measurement signals in the Simulation Data
Inspector, including steering wheel angle and torque, longitudinal and
lateral velocity, and sideslip angle

If you enable 3D visualization on the Reference Generator block 3D Engine tab by selecting
Enabled, you can view the vehicle response in the AutoVrtlEnv window.

To smoothly change the camera views, use these key commands.

Key Camera View
Back left
Back

Back right
Left

Internal

Right

Front left
Front

Front right
Overhead

OO IOl W| N -

View Animated GIF

R e R s

For additional camera controls, use these key commands.
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Key

Camera Control

Tab

Cycle the view between all vehicles in the scene.

View Animated GIF

Mouse scroll wheel

Control the camera distance from the vehicle.

View Animated GIF

T em—— I

o
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Key

Camera Control

Toggle a camera lag effect on or off. When you enable the lag effect, the
camera view includes:

» Position lag, based on the vehicle translational acceleration
* Rotation lag, based on the vehicle rotational velocity

This lag enables improved visualization of overall vehicle acceleration and
rotation.

View Animated GIF

Toggle the free camera mode on or off. When you enable the free camera
mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the vehicle.

View Animated GIF

References

[11]266 199601. Steady-State Directional Control Test Procedures for Passenger Cars and Light

Trucks. Warrendale, PA: SAE International, 1996.
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[2]1 ISO 4138:2012. Passenger cars — Steady-state circular driving behaviour — Open-loop test
methods. Geneva: ISO, 2012.

See Also
3D Engine | Driver Commands | Reference Generator

Related Examples

. “Vehicle Lateral Acceleration at Different Speeds” on page 1-38

More About
. “3D Visualization Engine Requirements and Limitations” on page 8-6
. “Coordinate Systems in Vehicle Dynamics Blockset” on page 2-2

. “ISO 15037-1:2006 Standard Measurement Signals” on page 5-2
. Simulation Data Inspector
. “Slowly Increasing Steering Maneuver” on page 3-32
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Run a Vehicle Dynamics Maneuver in 3D Environment

This example shows how to run a vehicle dynamics maneuver in a 3D environment. By integrating
vehicle dynamics models with a 3D environment, you can test advanced driver assistance systems
(ADAS) and automated driving (AD) perception, planning, and control software. For the 3D
visualization engine platform requirements and hardware recommendations, see “3D Visualization
Engine Requirements and Limitations” on page 8-6.

1 Create and open a working copy of a maneuver reference application. For example, open the
double-lane change reference application.
vdynblksDblLaneChangeStart

2  Run the maneuver simulation. By default, the 3D environment is disabled.
When you run the simulation, the Visualization subsystem provides driver, vehicle, and response
information. The reference application logs vehicle signals during the maneuver, including

steering, vehicle and engine speed, and lateral acceleration. You can use the Simulation Data
Inspector to import the logged signals and examine the data.
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Element Description

Driver Commands

Driver commands:

* Handwheel angle
¢ Acceleration command
e Brake command

Vehicle Response

Vehicle response:

* Engine speed
* Vehicle speed
¢ Acceleration command
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3

Element Description
Lane Change Scope Lateral vehicle displacement versus time:
block

* Red line — Cones marking lane boundary
* Blue line — Reference trajectory
* Green line — Actual trajectory

Steer vs Ay Scope block |Steering angle versus lateral acceleration

Steer, Velocity, Lat * SteerAngle — Steering angle versus time
Accel Scope block + <xdot> — Longitudinal vehicle velocity versus time
* <ay> — Lateral acceleration versus time

Vehicle XY Plotter Vehicle longitudinal versus lateral distance

ISO 15037-1:2006 block | Display ISO standard measurement signals in the Simulation Data
Inspector, including steering wheel angle and torque, longitudinal
and lateral velocity, and sideslip angle

Enable the 3D visualization environment. In the Visualization subsystem, open the 3D Engine
block. Set these parameters.

* 3D Engine to Enabled.
* Scene description to one of the scenes, for example Double lane change.

3D Engine
® Enabled
) Disabled

Scene: |Double lane change

| Straight road
Engine 1 Curved road

Initial F’arkin lot
 Double lane change
__ | Open surface s

* To position the vehicle in the scene:

a  Select the position initialization method:
* Recommended for scene — Set the initial vehicle position to values recommended
for the scene
» User-specified — Set your own initial vehicle position

b Click Update the model workspaces with the initial values to overwrite the initial
vehicle position in the model workspaces with the applied values.

Rerun the reference application. As the simulation runs, in the AutoVrt1lEnv window, view the
vehicle response.

To smoothly change the camera views, use these key commands.
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Key Camera View

Back left
Back

Back right
Left
Internal
Right
Front left
Front

Front right
Overhead

S| O| 0| J|O|U| HB|lW|IN -

For additional camera controls, use these key commands.
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Key

Camera Control

Tab

Cycle the view between all vehicles in the scene.

View Animated GIF

Mouse scroll wheel

Control the camera distance from the vehicle.

View Animated GIF

T —— R

R
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Key Camera Control
L Toggle a camera lag effect on or off. When you enable the lag effect,
the camera view includes:
» Position lag, based on the vehicle translational acceleration
* Rotation lag, based on the vehicle rotational velocity
This lag enables improved visualization of overall vehicle
acceleration and rotation.
View Animated GIF
- e =
F Toggle the free camera mode on or off. When you enable the free

camera mode, you can use the mouse to change the pitch and yaw
of the camera. This mode enables you to orbit the camera around
the vehicle.

View Animated GIF

For example, when you run the double-lane change maneuver, use the cameras to visualize the

vehicle as it changes lanes.




Run a Vehicle Dynamics Maneuver in 3D Environment

e Back

* Front left
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e Internal
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Note

* To open and close the AutoVrtlEnv window, use the Simulink Run and Stop buttons. If you
manually close the AutoVrt1lEnv window, Simulink stops the simulation with an error.

*  When you enable the 3D visualization environment, you cannot step the simulation back.

See Also

More About

. “Double-Lane Change Maneuver” on page 3-4

. “Slowly Increasing Steering Maneuver” on page 3-32

. “Swept-Sine Steering Maneuver” on page 3-22

. Simulation Data Inspector

. “Customize 3D Scenes for Vehicle Dynamics Simulations” on page 6-3
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Kinematics and Compliance Virtual Test Laboratory
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Model-Based Calibration Toolbox allows you to generate optimized suspension parameters for the
Independent Suspension - Mapped and Solid Axle Suspension - Mapped blocks by using the
kinematics (K) and compliance (C) virtual test laboratory.

To create and open a working copy of the K and C virtual test laboratory reference application, enter
vdynblksKandCTestLabStart

The K and C virtual test laboratory contains vehicle, test system, and test control subsystems. The
vehicle system has two variants:

* Simscape Multibody Vehicle — Vehicle with a Simscape Multibody suspension system
* VDBS Vehicle — Vehicle with an Independent Suspension - Mapped block

DoE Chirp Test
* \eh
LabCtrl
» Lab
i » Veh
Test Control
# LabCtr Weh —
» LabCtrl Lab —
# Lab ‘u’ehF‘hysE[ VehPhys
Test System
Vehicle

This table summarizes the virtual test laboratory tests.


matlab:vdynblksKandCTestLabStart

Kinematics and Compliance Virtual Test Laboratory

Test

Objective

Method

Generate Mapped
Suspension from
Spreadsheet Data

Use measured vertical
force and suspension
geometry data to
generate calibrated
suspension parameters
for the mapped
suspension blocks.

Note You can use a
third-party simulation
model to generate the
measured suspension
data.

The virtual test lab uses Model-Based Calibration
Toolbox to fit camber angle, toe angle, and vertical
force response models for the data. The virtual
test lab then uses the response models to generate
suspension parameters for the suspension blocks.

Generate Mapped
Suspension from
Simscape Suspension

Use a Simscape
Multibody suspension
system to generate
calibrated suspension
parameters for the
suspension mapped
blocks.

The virtual test lab uses Model-Based Calibration
Toolbox to perform a Sobol sequence design of
experiments (DoE) on the suspension height and
handwheel angle operating points. At each
operating point, the reference application
stimulates the Simscape Multibody suspension
system with a chirp signal over a frequency range
of 0.1 to 2 Hz. The virtual test lab then uses the
data to fit the suspension vertical force, camber
angle, and toe angle with a Gaussian process
model (GPM) as a function of the suspension state.
Finally, the reference application uses the GPM to
generate suspension parameters for the
suspension blocks.

Compare Mapped and
Simscape Suspension
Responses

Compare the mapped
suspension with the
Simscape Multibody
suspension results.

The virtual test laboratory stimulates the
Simscape Multibody suspension at one operating
point and then compares the response to the
mapped suspension.

Generate Mapped Suspension from Spreadsheet Data

The virtual test lab uses Model-Based Calibration Toolbox to fit camber angle, toe angle, and vertical
force response models for the data. The virtual test lab then uses the response models to generate

suspension parameters for the suspension blocks.

Generate Mapped Suspension Calibration

1 Use the Spreadsheet file field to provide a data file. By default, the reference application has
KandCTestData.xlsx containing required data. The table summarizes the data file

requirements for generating calibrated tables.
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Data Description Data Requirements for
Generating Mapped
Suspension Tables

z Vertical axis suspension height, in |Required
m

zdot Vertical axis suspension height Required
velocity breakpoints, in m/s

str Steering angle, in rad Required

Fz Vertical axis suspension force, in |Required
N

ca Camber angle, in rad Required

ta Toe angle, in rad Required

2 Click Generate mapped suspension calibration to generate response surface models in
Model-Based Calibration Toolbox.

The model browser opens when the process completes. You can view the camber angle, caq, toe
angle, ta, and vertical force, Fz, response model fits for the data.

File Model  View Outliers  Window  Help

@ LOcd & kXxE 7 o db ‘23| @[] [ [ ] &

All Models /@ Response Model: ca
@ MappedSuspensionil
- E MappedSuspensic

Model type: Gaussian Process Model (ARDSquaredExponential, Constant)

@ i3 Response Surface fm X
- MappedSuspensic Plot: Surface >
@ Fz X-axis: |str w
Y-axiz. |z w
Name: Walue Tolerance
sir -0.382604f || Linked to X-... E
z -0.027561¢L_|[Linked to ¥'-... H

Select Data Point... str [rad]

Apply Calibration to Mapped Suspension Model

1 Click Apply calibration to mapped suspension model. The virtual test lab uses the response
models to generate calibrated suspension and breakpoint data.

2 Click OK to update the model workspace and suspension blocks.

In the Model Explorer, you can view the generated suspension parameters.
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Model Hierarchy

2 =

v P21 simulink Root
E Base Workspace

v [*a] KandcvirtuarTestLab
E Model Workspace*

'@,‘; Configurations

Subsystem4

E Contents of; Model Workspace* (only)

Veh_PARAM
% f_susp_axl_bp

Column View: |Data Objects * | Show Details
Mame Value
% DOEMAT [0.0500.05 0.1 2 100]

<1x1 struct>

Test Control [12]

Test System % f_susp_dz_bp [-0.0275619067514496 -0.02067

Vehicle % f_susp_dzdot_bp [-0.720046014836431 -0.54003<
% f_susp_fmz <5D double=
% f_susp_geom <4-D double=
% f_susp_strgdelta_bp [-0.382604972274104 -0.369851
[s] vtol 0.1

Parameter Model Workspace Description

Variable

Axle breakpoints,
f susp_axl bp

f susp axl bp

Axle breakpoints, P, dimensionless.

Vertical axis
suspension height
breakpoints,
f susp _dz_bp

f susp dz bp

Vertical axis suspension height breakpoints, M,
in m.

Vertical axis
suspension height
velocity breakpoints,
f susp_dzdot_bp

f susp dzdot bp

Vertical axis suspension height velocity
breakpoints, N, in m/s.

Vertical axis
suspension force and
moment responses,

f susp fmz

f susp fmz

M-by-N-by-0-by-P-by-4 array of output values as
a function of:

* Vertical suspension height, M

» Vertical suspension height velocity, N

* Steering angle, O

e Axle, P

* 4 output types

e 1 — Vertical force, in N'm
e 2 — User-defined

* 3 — Stored energy, in ]

* 4 — Absorbed power, in W
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Parameter

Model Workspace
Variable

Description

Suspension geometry
responses,
f susp_geom

f susp _geom

M-by-0-by-P-by-3 array of geometric suspension
values as a function of:

* Vertical suspension height, M

* Steering angle, O

* Axle, P

* 3 output types

e 1 — Camber angle, in rad
* 2 — Caster angle, in rad
* 3 — Toe angle, in rad

Steering angle
breakpoints,
f susp_strgdelta_bp

f susp strgdelta bp

Steering angle breakpoints, O, in rad.

Generate Mapped Suspension from Simscape Suspension

The virtual test lab uses Model-Based Calibration Toolbox to perform a Sobol sequence design of
experiments (DoE) on the suspension height and handwheel angle operating points. At each
operating point, the reference application stimulates the Simscape Multibody suspension system with
a chirp signal over a frequency range of 0.1 to 2 Hz. The virtual test lab then uses the data to fit the
suspension vertical force, camber angle, and toe angle with a Gaussian process model (GPM) as a
function of the suspension state. Finally, the reference application uses the GPM to generate
suspension parameters for the suspension blocks.

The test laboratory exercises the suspension system with the DOE settings contained in the DOEMAT
array. To view the DOEMAT array values, open the Model Explorer.

Element

Description

DOEMAT(1,1)

Suspension height

DOEMAT(1,2)

Handwheel angle

DOEMAT(1,3)

Chirp signal amplitude

DOEMAT(1,4)

Starting chirp frequency

DOEMAT(1,5)

Ending chirp frequency

DOEMAT(1,6)

Simulation time to complete chirp signal frequency range

The generation can take time to run and slow other computer processes. View progress in the

MATLAB® window.

In the Model Explorer, you can view the generated suspension parameters.
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Model Hierarchy

2 =

v P21 simulink Root
E Base Workspace

v [*a] KandcvirtuarTestLab
E Model Workspace*

'@,‘; Configurations

Subsystem4

E Contents of; Model Workspace* (only)

Veh_PARAM
% f_susp_axl_bp

Column View: |Data Objects * | Show Details
Mame Value
% DOEMAT [0.0500.05 0.1 2 100]

<1x1 struct>

Test Control [12]

Test System % f_susp_dz_bp [-0.0275619067514496 -0.02067

Vehicle % f_susp_dzdot_bp [-0.720046014836431 -0.54003<
% f_susp_fmz <5D double=
% f_susp_geom <4-D double=
% f_susp_strgdelta_bp [-0.382604972274104 -0.369851
[s] vtol 0.1

Parameter Model Workspace Description

Variable

Axle breakpoints,
f susp_axl bp

f susp axl bp

Axle breakpoints, P, dimensionless.

Vertical axis
suspension height
breakpoints,
f susp _dz_bp

f susp dz bp

Vertical axis suspension height breakpoints, M,
in m.

Vertical axis
suspension height
velocity breakpoints,
f susp_dzdot_bp

f susp dzdot bp

Vertical axis suspension height velocity
breakpoints, N, in m/s.

Vertical axis
suspension force and
moment responses,

f susp fmz

f susp fmz

M-by-N-by-0-by-P-by-4 array of output values as
a function of:

* Vertical suspension height, M

» Vertical suspension height velocity, N

* Steering angle, O

e Axle, P

* 4 output types

e 1 — Vertical force, in N'm
e 2 — User-defined

* 3 — Stored energy, in ]

* 4 — Absorbed power, in W
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Parameter

Model Workspace
Variable

Description

Suspension geometry
responses,
f susp_geom

f susp _geom

M-by-0-by-P-by-3 array of geometric suspension
values as a function of:

* Vertical suspension height, M

* Steering angle, O

* Axle, P

* 3 output types

e 1 — Camber angle, in rad
* 2 — Caster angle, in rad
* 3 — Toe angle, in rad

Steering angle
breakpoints,

f susp_strgdelta_bp

f susp strgdelta bp

Steering angle breakpoints, O, in rad.

Compare Mapped and Simscape Suspension Responses

The virtual test laboratory stimulates the Simscape Multibody suspension at one operating point and
then compares the response to the mapped suspension.

» To stimulate the Simscape Multibody suspension model, the test laboratory uses with the DOE
settings contained in the DOEMAT array.

During the simulation, to view the suspension system, select the Mechanics Explorers tab.




Kinematics and Compliance Virtual Test Laboratory

MECHANICS EXPLORERS VIEW

MATLAE » Projects » slexamples » KandCVirtualTestLab »
Simulink Project - KandCVirtualTestLab | Mechanics Explorers - Mechanics Explorer-Kand CVirtualTestLabAg
| Mechanics Explorer-KandCVirtualTestLabActuater 0 |

2, r:andcwrtuawestLab.qctuat4f
---DDD Actuator_LF
---':'D':' Actuator_LR
---Dg':' Actuator_RF
---DDD Actuator_ RR
- Body

- Steering
---Dg':' Susp_LF
---DDD Susp_LR v
---DD':' Susp_RF L
---':'D':' Susp_RR :
---Dg':' World_Clamp
-4 Prismatic_Rack
-4 Spherical_Spindle_TiL f :
- i@ Spherical_Spindle_TiR

F-Connection Frames
£

~
.

L.

» After the simulation completes, use the Simulation Data Inspector to compare the suspension
system response for the mapped suspension and Simscape Multibody suspension model. For
example, compare the vertical force, camber angle, and toe angle responses.
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See Also
Independent Suspension - Mapped | Solid Axle Suspension - Mapped

More About

. Simulation Data Inspector
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Send and Receive Double-Lane Change Scene Data

This example shows you how to use the Simulation 3D Message Set and Simulation 3D Message Get
blocks to communicate with the 3D visualization environment when you run the double-lane change
maneuver. Specifically, you use the:

* Simulation 3D Message Get block to retrieve how many cones the vehicle hits during the
maneuver.
« Simulation 3D Message Set block to control the traffic signal light.

For the minimum hardware required to run the example, see the “3D Visualization Engine
Requirements and Limitations” on page 8-6.

Run a Double-Lane Change Maneuver That Hits Cones

With the 3D visualization environment enabled, run a double-lane change maneuver that hits the
cones.

1 Create and open a working copy of the double-lane change reference application project.

vdynblksDblLaneChangeStart

2 Enable the 3D visualization environment. In the Visualization subsystem, open the 3D Engine
block mask and select Enabled. Apply the changes and save the model.

Alternatively, at the MATLAB command prompt, enter this code.
See Code That Enables 3D Environment

% Enable the 3D visualization environment

mdl = 'DLCReferenceApplication’;

set param([mdl '/Visualization/3D Engine'l], 'engine3D', 'Enabled');
save_system(mdl)

3 In the top level of the model, set the Lane Change Reference Generator block parameters so that
the vehicle does not successfully complete the maneuver. Set these block parameters, apply the
changes, and save the model.

* Maneuver start time to 5.

* Longitudinal entrance velocity setpoint to 40.
Alternatively, at the MATLAB command prompt, enter this code.
See Code That Sets Parameters

% Set Lane Change Reference Generator block parameters

mdl = 'DLCReferenceApplication’;

set param([mdl '/Lane Change Reference Generator'],'t start','5');
set param([mdl '/Lane Change Reference Generator'], 'xdot r','40');
save_system(mdl)

4 Run the maneuver. As the simulation runs, in the AutoVrtlEnv window, you can see the vehicle
hitting the cones.
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Use Simulation 3D Message Get Block to Retrieve Cone Data

Use the Simulation 3D Message Get block to retrieve how many cones the vehicle hits during the
maneuver. By default, the maneuver uses the double-lane change scene.

1 Navigate to the Visualization > 3D Engine subsystem. Right-click the 3D Engine block and select
Mask > Look Under Mask. In the Visualization > 3D Engine > 3D Engine subsystem, insert
these blocks:

* Simulation 3D Message Get
» Display
* Math Function

2 Set the Simulation 3D Message Get block parameters so that the block retrieves cone data from
the double-lane change scene. Set these block parameters, apply the changes, and save the
model.

* Signal name, SigName to NumOfConesHit
* Data type, DataType to boolean

* Message size, MsgSize to [2 15]

* Sample time to -1

3-72



Send and Receive Double-Lane Change Scene Data

Simulation 3D Message Get (mask) (link)
Retrieves data from the 3D visualization environment. To use the
block, install the support package for customizing scenes. If you set
Simulation 3D Scene Configuration block. Ensure that the Simulation
3D Scene Configuration block is in your model.

Parameters

Signal name, SigName []: |Num0ﬂ;‘onesHit |

Data type, DataType []: |boolean -

Message size, MsgSize []: |[2 15] | g

Sample time: |—1 | g

Block Parameters: Simulation 3D Message Get X

the sample time to -1, the block uses the sample time specified in the

Alternatively, at the MATLAB command prompt, enter this code.

See Code That Sets Parameters

% Set these Simulation 3D Message Get block parameters

visualss='DLCReferenceApplication/Visualization/3D Engine/3D Engine';

set param([visualss '/Simulation 3D Message Get'],'SigName', 'NumOfConesHit"');
set param([visualss '/Simulation 3D Message Get'], 'DataType', 'boolean');

set param([visualss '/Simulation 3D Message Get'], 'MsgSize','[2 15]");

set param([visualss '/Simulation 3D Message Get'],'Ts','-1');

save system(mdl)

Set the Math Function block Output dimensionality parameter to transpose. When you run
the simulation, the Math Function block outputs a [15 2] array.

Block Parameters: Math Function
Math

Mathematical functions including logarithmic, exponential, power, and

*

modulus functions. When the function has more than one argument, the

first argument corresponds to the top (or left) input port.

Main  Signal Attributes

Function: | transpose

Output signal type: |auto

Alternatively, at the MATLAB command prompt, enter this code.

See Code That Sets Parameters

% Set the Math Function block parameter to transpose the array
visualss='DLCReferenceApplication/Visualization/3D Engine/3D Engine';
set param([visualss '/Math Function'], 'Function', 'transpose');

save system(mdl)

Connect the Simulation 3D Message Get, Math Function, and Display blocks as shown. Confirm

the block parameters. Save the model.
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Math Dizplay
Function

Simulation 3D Meszage Get

'

Simulation 3D Scene Configuration

Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D
Message Get block. That way, the Unreal Engine 3D visualization environment prepares the data
before the Simulation 3D Message Get block receives it. To check the block execution order,
right-click the blocks and select Properties. On the General tab, confirm these Priority
settings:

* Simulation 3D Scene Configuration — 0
* Simulation 3D Message Get — 1

For more information about execution order, see “Control and Display Execution Order”.

Run the maneuver. As the simulation runs, the display block updates with the ReadMsg boolean
value 1 when the vehicle hits the corresponding cone.
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| 0| 0
| ]| ol
| B 0|
| | 0
| | 0
| ]| 1]
| ]|

| | 0
| 0| 0
| ]| 0|
| 0| o]
| | 1]
| | 1
| 0| 1]
| f| ol

Display

The results indicate that the vehicle hits SM_Cone20, SM_Cone27, SM_Cone28, and SM_Cone29
during the maneuver.

This table provides the Double Lane Change scene cone name that corresponds to the ReadMsg
array element.

Simulation 3D Unreal® Editor Cone |Simulation 3D Unreal Editor Cone
Message Get Block |Name Message Get Block |Name
ReadMsg Value Array Element

ReadMsg(1,1) SM Cone5 ReadMsg(2,1) SM Conel0
ReadMsg(1,2) SM Cone4 ReadMsg(2,2) SM Cone09
ReadMsg(1,3) SM Cone3 ReadMsg(2,3) SM Cone08
ReadMsg(1,4) SM Cone2 ReadMsg(2,4) SM Cone07
ReadMsg(1,5) SM Cone01 ReadMsg(2,5) SM Cone06
ReadMsg(1,6) SM Conel5 ReadMsg(2,6) SM Cone20
ReadMsg(1,7) SM Conel4d ReadMsg(2,7) SM Conel9
ReadMsg(1,8) SM Conel3 ReadMsg(2,8) SM Conel8
ReadMsg(1,9) SM Conel2 ReadMsg(2,9) SM Conel7?
ReadMsg(1,10) SM Conell ReadMsg(2,10) SM Conel6
ReadMsg(1,11) SM Cone25 ReadMsg(2,11) SM Cone30
ReadMsg(1,12) SM Cone24 ReadMsg(2,12) SM Cone29
ReadMsg(1,13) SM Cone23 ReadMsg(2,13) SM Cone28
ReadMsg(1,14) SM Cone22 ReadMsg(2,14) SM Cone27
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Simulation 3D Unreal® Editor Cone |Simulation 3D Unreal Editor Cone
Message Get Block |Name Message Get Block |Name

ReadMsg Value Array Element

ReadMsg(1,15) SM Cone21 ReadMsg(2,15) SM Cone26

Use Simulation 3D Message Set Block to Control Traffic Signal Light

1

Navigate to the Visualization > 3D Engine subsystem. Right-click the 3D Engine block and select
Mask > Look Under Mask. In the Visualization > 3D Engine > 3D Engine subsystem, insert
these blocks:

* Simulation 3D Message Set

* Repeating Sequence Stair

Set the Simulation 3D Message Set block parameters so that the block sends traffic signal data to
the double-lane change scene. Set these block parameters, apply the changes, and save the
model.

* Signal name, SigName to TrafficLightl

* Sample time to -1

Block Parameters: Simulation 30 Message Set >
Simulation 3D Message Set (mask) (link)

Sends data to the 3D visualization envirenment. To use the block,
install the support package for customizing scenes. If you set the
sample time to -1, the block uses the sample time specified in the
Simulation 3D Scene Configuration block. Ensure that the Simulation
3D Scene Configuration block is in your model.

Parameters

Signal name, SigName []: |Trafﬁcljght1 |

Sample time: |-1 | g

This table provides the scene traffic signal light color that corresponds to the WriteMsg value in
the Double Lane Change scene.

Simulation 3D Message Set Block TrafficlLightl Color
WriteMsg Value

0 Red

1 Yellow

2 Green

Alternatively, at the MATLAB command prompt, enter this code.

See Code That Sets Parameters

% Set Simulation 3D Message Set block parameters
visualss='DLCReferenceApplication/Visualization/3D Engine/3D Engine';

set param([visualss '/Simulation 3D Message Set'],'SigName', 'TrafficLightl');
set param([visualss '/Simulation 3D Message Set'],'Ts','-1");

save system(mdl)
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Set the Repeating Sequence Stair block parameters to send a command that corresponds to red,
yellow, and green traffic light signals. Set these block parameters, apply the changes, and save
the model.

* Vectorofoutputvalues:to [0 0 0 1 12 22 2222222222222222
222222]."

* Sample time to 1

Block Parameters: Repeating Sequence Stair X
Repeating Sequence Stair (mask) (link)
Discrete time sequence is output, then repeated.

Main  Signal Attributes
Vector of output values:

|[00[}112222222222222222222222222].' |

Sample time:
! IE

J- Cancel Help Apply

*  Output data type to int32

Block Parameters: Repeating Sequence Stair X
Repeating Sequence Stair (mask) (link)
Discrete time sequence is output, then repeated.

Main Signal Attributes

Output minimum: Output maximum:
0 i [

Output data type: | int32 MIF .

[ Lock output data type setting against changes by the fixed-point toals

J- Cancel Help Apply

Alternatively, at the MATLAB command prompt, enter this code. Apply the block changes and
save the model.

See Code That Sets Parameters

% Set Repeating Sequence Stair block parameters
visualss='DLCReferenceApplication/Visualization/3D Engine/3D Engine';

open_system([visualss '/Repeating Sequence Stair']l);

set param([visualss '/Repeating Sequence Stair'],'OutValues',"[0 0 0 1 1222222222222222222222

set param([visualss '/Repeating Sequence Stair'],'tsamp','1l");
set param([visualss '/Repeating Sequence Stair'],'OutDataTypeStr','int32");

Connect the blocks as shown. Confirm the block parameters and signal connections. Save the
model.
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Simulation 30 Message Set

Verify that the Simulation 3D Message Set block executes before the Simulation 3D Scene
Configuration block. That way, Simulation 3D Message Set prepares the signal data before the
Unreal Engine 3D visualization environment receives it. To check the block execution order,
right-click the blocks and select Properties. On the General tab, confirm these Priority
settings:

» Simulation 3D Scene Configuration — 0
* Simulation 3D Message Set — -1

For more information about execution order, see “Control and Display Execution Order”.

Run the maneuver. As the simulation runs, in the AutoVrtlEnv window, you can see the
TrafficLight1l light change from red to yellow to green.
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Time Range (s) WriteMsg Value TrafficLightl Color
0-3 0 Red
3-5 1 Yellow
5-30 2 Green
See Also

3D Engine | Double Lane Change | Simulation 3D Message Get | Simulation 3D Message Set |
Simulation 3D Scene Configuration

Related Examples

. “Double Lane Change Reference Application” on page 7-4
. “Yaw Stability on Varying Road Surfaces” on page 1-16

More About

. “Customize 3D Scenes for Vehicle Dynamics Simulations” on page 6-3
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. “Get Started Communicating with the Unreal Engine Visualization Environment” on page 6-19
. “3D Visualization Engine Requirements and Limitations” on page 8-6
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4 Project Templates

Vehicle Dynamics Blockset Project Templates

Vehicle Dynamics Blockset provides preassembled vehicle dynamics models that you can use to
analyze the dynamic system response to common ride and handling tests. Use the templates to create
vehicle dynamic model variants for the maneuver reference applications. Open project files that
contain the vehicle models from the Simulink start page.

1 In Simulink, on the Simulation tab, select New > Project > New Project.

In the Simulink start page, browse to Vehicle Dynamics Blockset and select Passenger 3DOF
Vehicle, Passenger 7DOF Vehicle, or Passenger 14DOF Vehicle.

In the Create Project dialog box, in Project name, enter a project name.

In Folder, enter a project folder or browse to the folder to save the project.

Click OK.

If the folder does not exist, the dialog box prompts you to create it. Click Yes.

The software compiles the project and populates the project folders. All models and supporting
files are in place for you to customize your vehicle dynamics model.

This table summarizes the vehicle dynamics project templates.

Vehicle |Description Vehicle Body Degrees-of-Freedom Wheel DOFs
Model (DOFs)
Passeng |* Vehicle with |Six Two per wheel - eight total
er four wheels
LADIOIE | el o Translational Rotational Translational [Rotational
Vehicle model Longitudinal v/ |Pitch v Vertical |v |Rolling | v
;’;rlant I llLateral v |Yaw v
e
maneuver || Vertical v |Roll 4
reference
applications
Passeng |* Vehicle with |Three One per wheel - four total
er 7DOF four wheels
Vehicle (I, Available as Translational Rotational Rotational
model Longitudinal v |Pitch Rolling v
:ﬁglant n Lateral v |Yaw v
maneuver || Vertical Roll
reference
applications
Passeng |¢ Vehicle with |Three None
er 3DOF ideal tire
Vehicle Translational Rotational
Longitudinal v |Pitch
Lateral v |Yaw v
Vertical Roll
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See Also

More About

. “Double-Lane Change Maneuver” on page 3-4
. “Slowly Increasing Steering Maneuver” on page 3-32
. “Swept-Sine Steering Maneuver” on page 3-22
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5 Maneuver Standards

ISO 15037-1:2006 Standard Measurement Signals

5-2

You can configure the maneuver reference applications to display ISO 15037-1:2006!"! standard
measurement signals in the Simulation Data Inspector, including steering wheel angle and torque,
longitudinal and lateral velocity, and sideslip angle.

To configure the ISO signal display, in the reference application Visualization subsystem, open the
ISO 15037-1:2006 block. Select Enabled. After you run the maneuver, the Simulation Data Inspector
opens with standard measurements.

For example, to display the ISO signals when you run the double lane change maneuver:
1 Create and open a working copy of the double-lane change reference application project.

vdynblksDblLaneChangeStart

2 In the Visualization subsystem, open the ISO 15037-1:2006 block. Select Enabled. Save the
reference application.

3  Run the maneuver. As the simulation runs, view the ISO standard measurement signals in the
Simulation Data Inspector, including steering wheel angle and torque, longitudinal and lateral
velocity, and sideslip angle.

W Steering-wheel angle

0 2 4 3} 8 10 12 14 16 13

W Steering-wheel torgue

0 2 4 3} 8 10 12 14 16 13

W Longitudinal velocity m Lateral velocity

[
-]

a 2 4 5] g 10 12 14 16 18
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See Also

More About

. “Double-Lane Change Maneuver” on page 3-4

. “Slowly Increasing Steering Maneuver” on page 3-32
. “Swept-Sine Steering Maneuver” on page 3-22

. Simulation Data Inspector

External Websites

. International Organization for Standardization
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Support Package For Maneuver and Drive Cycle Data

This example shows how to install additional maneuver and drive cycle data from a support package.
By default, the Drive Cycle Source block has the FTP-75 drive cycle data. The support package has
drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
In the Drive Cycle Source block, click Install additional drive cycles to start the installer.
Follow the instructions and default settings provided by the installer to complete the installation.
On the Select a support package screen, select the data you want to add:

Accept or change the Installation folder and click Next.

Note You must have write permission for the Installation folder.

See Also
Drive Cycle Source
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Customize 3D Scenes for Vehicle Dynamics Simulations

%3] ScRReferencenppication b

Vehicle Dynamics Blockset comes installed with prebuilt 3D scenes in which to simulate and visualize
the vehicles modeled in Simulink. These 3D scenes are visualized using the Unreal Engine from Epic
Games. By using the Unreal Editor, you can customize these scenes or simulate within the scenes
from your own custom project.

By using the Unreal Editor and the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects
support package, you can customize these scenes. You can also use the Unreal Editor and the support
package to simulate within scenes from your own custom project.

With custom scenes, you can co-simulate in both Simulink and the Unreal Editor so that you can
modify your scenes between simulation runs. To customize scenes, you should be familiar with
creating and modifying scenes in the Unreal Editor.
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To customize 3D scenes, follow these steps:

1  “Install Support Package and Configure Environment” on page 6-5

2  “Migrate Projects Developed Using Prior Support Packages” on page 6-8
3  “Customize Scenes Using Simulink and Unreal Editor” on page 6-9

4 “Package Custom Scenes into Executable” on page 6-17

See Also

Simulation 3D Scene Configuration

Related Examples

. “Send and Receive Double-Lane Change Scene Data” on page 3-71

More About

. “How 3D Simulation for Vehicle Dynamics Blockset Works” on page 8-8

. “3D Visualization Engine Requirements and Limitations” on page 8-6
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Install Support Package and Configure Environment

Install Support Package and Configure Environment

To customize scenes in the Unreal and use them in Simulink, you must install and configure the
Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package.

Verify Software and Hardware Requirements

Before installing the support package, make sure that your environment meets the minimum software
and hardware requirements described in “3D Visualization Engine Requirements and Limitations” on
page 8-6. In particular, verify that you have Visual Studio® 2017 installed. This software is required
for using the Unreal Editor to customize scenes.

Install Support Package

To install the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package,
follow these steps:

1 Onthe MATLAB Home tab, in the Environment section, select Add-Ons > Get Add-Ons.

f:% @ ILQ; Community

= Request Support
AddOns| Help —
- ~  [E]l Learn MATLAB

2 In the Add-On Explorer window, search for the Vehicle Dynamics Blockset Interface for Unreal
Engine 4 Projects support package. Click Install.

Note You must have write permission for the installation folder.

Configure Environment

The Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package includes these
components:

* An Unreal project, AutoVrtlEnv.uproject, and its associated files. The project includes
editable versions of the prebuilt 3D scenes that you can select from the Scene description
parameter of the Simulation 3D Scene Configuration block. To use this project, you must copy the
file to a folder on your local machine.

* A plugin file, MathWorkSimulation.uplugin. This plugin establishes the connection between
MATLAB and the Unreal Editor and is required for co-simulation. You must copy this plugin to
your local installation of the editor.
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To copy the project to a local folder and the plugin to your Unreal Editor installation, follow these
one-time steps. Use the “Code That Configures Scene Configuration (Steps 1-4)” on page 6-6.

St |Description
ep

1 |Specify the location of the support package project files and a local folder destination.

Note You must have write permission for the local folder destination.

2 | Specify the location of the Unreal Engine installation, for example C:\Program Files\Epic
Games\UE 4.23.

3 |Copy the MathWorksSimulation plugin to the Unreal Engine plugin folder.

Copy the support package folder that contains the AutoVrtlEnv.uproject files to the local
folder destination.

Code That Configures Scene Configuration (Steps 1-4)

%% STEP1
Specify the location of the support package project files and a local folder destination
s Note: Only one path is supported. Select latest download path.
dest _root = "C:\Local";
src_root = fullfile(matlabshared.supportpkg.getSupportPackageRoot, ...
"toolbox", "shared", "sim3dprojects", "automotive");

°© o

%% STEP2
% Specify the location of the Unreal Engine installation.
ueInstFolder = "C:\Program Files\Epic Games\UE 4.23";

%% STEP3

% Copy the MathWorksSimulation plugin to the Unreal Engine plugin folder.
mwPluginName = "MathWorksSimulation";

mwPluginFolder = fullfile(src_root, "PluginResources", "UE423"); % choose UE version

uePluginFolder = fullfile(ueInstFolder, "Engine", "Plugins");
uePluginDst = fullfile(uePluginFolder, "Marketplace", "MathWorks");

cd(uePluginFolder)
foundPlugins = dir("**/" + mwPluginName +

.uplugin");

if ~isempty(foundPlugins)
numPlugins = size(foundPlugins, 1);
msg2 = cell(1l, numPlugins);
pluginCell = struct2cell(foundPlugins);

msgl = "Plugin(s) already exist here:" + newline + newline;
for n = 1:numPlugins
msg2{n} = " " + pluginCell{2,n} + newline;
end
msg3 = newline + "Please remove plugin folder(s) and try again.";
msg = msgl + msg2 + msg3;
warning(msg);
else

copyfile(mwPluginFolder, uePluginDst);
disp("Successfully copied MathWorksSimulation plugin to UE4 engine plugins!")
end

%% STEP4
% Copy the support package folder that contains the AutoVrtlEnv.uproject
% files to the local folder destination.
projFolderName = "AutoVrtlEnv";
projSrcFolder = fullfile(src_root, projFolderName);
projDstFolder = fullfile(dest root, projFolderName);
if ~exist(projDstFolder, "dir")
copyfile(projSrcFolder, projDstFolder);
end

If you want to use a project developed using a prior release of the Vehicle Dynamics Blockset
Interface for Unreal Engine 4 Projects support package, you must migrate the project to make it
compatible with Unreal Editor 4.23. See “Migrate Projects Developed Using Prior Support Packages”
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on page 6-8. Otherwise, you can “Customize Scenes Using Simulink and Unreal Editor” on page 6-
9.

See Also
Simulation 3D Scene Configuration

More About

. “Customize 3D Scenes for Vehicle Dynamics Simulations” on page 6-3
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Migrate Projects Developed Using Prior Support Packages
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After you install the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support
package as described in “Install Support Package and Configure Environment” on page 6-5, you may
need to migrate your project. If your Simulink model uses an Unreal Engine executable or project
developed using a prior release of the support package, you must migrate the project to make it
compatible with Unreal Editor 4.23. Follow these steps:

1

Open Unreal Engine 4.23. For example, navigate to C:\Program Files\Epic Games
\UE_4.23\Engine\Binaries\Win64 and open UE4Editor.exe.

Use the Unreal Project Browser to open the project that you want to migrate.

Follow the prompts to open a copy of the project. The editor creates a new project folder in the
same location as the original, appended with 4.23. Close the editor.

In a file explorer, remove the space in the migrated project folder name. For example, rename
MyProject 4.23 toMyProject4.23.

Use MATLAB to open the migrated project in Unreal Editor 4.23. For example, if you have a
migrated project saved to the C:/Local folder, use this MATLAB code:

path = fullfile('C:','Local', 'MyProject4.23"', 'MyProject.uproject');
editor = sim3d.Editor(path);
open(editor);

Note The R2020a support package includes changes in the implementation of some actors.
Therefore, if the original project contains actors that are placed in the scene, some of them might
not fully migrate to Unreal Editor 4.23. To check, examine the Output Log.

EX Output Log

3
port_ 2 save 1 K

The log might contain error messages. For more information, see the Unreal Engine 4
Documentation or contact MathWorks Technical Support.

Optionally, after you migrate the project, you can use the project to create an Unreal Engine
executable. See “Package Custom Scenes into Executable” on page 6-17.

After you migrate the project, you can create custom scenes. See “Customize Scenes Using Simulink
and Unreal Editor” on page 6-9.

See Also
Simulation 3D Scene Configuration

More About

“Customize 3D Scenes for Vehicle Dynamics Simulations” on page 6-3
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Customize Scenes Using Simulink and Unreal Editor

After you install the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support
package as described in “Install Support Package and Configure Environment” on page 6-5, you can
simulate in custom scenes simultaneously from both the Unreal Editor and Simulink. By using this co-
simulation framework, you can add vehicles and sensors to a Simulink model and then run this
simulation in your custom scene.

To use a project that you developed using a prior release of the support package, first migrate the
project to be compatible with Unreal Engine 4.23. See “Migrate Projects Developed Using Prior
Support Packages” on page 6-8.

Open Unreal Editor

If you open your Unreal project file directly in the Unreal Editor, Simulink is unable to establish a
connection with the editor. To establish this connection, you must open your project from a Simulink
model or use a MATLAB function.

The first time that you open the Unreal Editor, you might be asked to rebuild UE4Editor DLL files or
the AutoVrt1lEnv module. Click Yes to rebuild these files or modules. The editor also prompts you
that new plugins are available. Click Manage Plugins and verify that the MathWorks Interface
plugin is installed. This plugin is the MathWorksSimulation.uplugin file that you copied into your
Unreal Editor installation in “Install Support Package and Configure Environment” on page 6-5.

When the editor opens, you can ignore any warning messages about files with the name
' BuiltData' that failed to load.

If you receive a warning that the lighting needs to be rebuilt, from the toolbar above the editor
window, select Build > Build Lighting Only. The editor issues this warning the first time you open
a scene or when you add new elements to a scene. To use the lighting that comes installed with
AutoVrtlEnv in Vehicle Dynamics Blockset, see “Use AutoVrtlEnv Project Lighting in Custom
Scene” on page 6-12.

Open Unreal Editor from Simulink

1 Open a Simulink model configured to simulate in the 3D environment. At a minimum, the model
must contain a Simulation 3D Scene Configuration block.

2 In the Simulation 3D Scene Configuration block of this model, set the Scene source parameter
toUnreal Editor.

3 In the Project parameter, browse for the project file that contains the scenes that you want to
customize.

For example, this sample path specifies the AutoVrt1lEnv project that comes installed with the
Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package.

C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject
This sample path specifies a custom project.

Z:\UnrealProjects\myProject\myProject.uproject
4 Click Open Unreal Editor. The Unreal Editor opens and loads a scene from your project.
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Open Unreal Editor Using Command-Line Function

To open the AutoVrtlEnv.uproject file that was copied from the Vehicle Dynamics Blockset
Interface for Unreal Engine 4 Projects support package, specify the path to where you copied this
project. For example, if you copied the AutoVrtlEnv.uproject to C:/Local/AutoVrtlEnv, use
this code:

path = fullfile('C:"', 'Local', 'AutoVrtlEnv', 'AutoVrtlEnv.uproject');
editor = sim3d.Editor(path);
open(editor);

The editor opens the AutoVrtlEnv.uproject file. By default, the project displays the Straight
Road scene.

To open your own project, use the same commands used to open the AutoVrtlEnv.uproject file.
Update the path variable with the path to your .uproject file. For example, if you have a project
saved to the C: /Local folder, use this code:

path = fullfile('C:', 'Local', 'myProject', 'myProject.uproject');

editor = sim3d.Editor(path);
open(editor);

Reparent Actor Blueprint

Note If you are using a scene from the AutoVtrlEnv project that comes installed with the Vehicle
Dynamics Blockset Interface for Unreal Engine 4 Projects support package, skip this section.
However, if you create a new scene based off of one of the scenes in this project, then you must
complete this section.

The first time that you open a custom scene from Simulink, you need to associate, or reparent, this
project with the Sim3dLevelScriptActor level blueprint used in Vehicle Dynamics Blockset. The
level blueprint controls how objects interact with the 3D environment once they are placed in it.
Simulink returns an error at the start of simulation if the project is not reparented. You must reparent
each scene in a custom project separately.

To reparent the level blueprint, follow these steps:

In the Unreal Editor toolbar, select Blueprints > Open Level Blueprint.

In the Level Blueprint window, select File > Reparent Blueprint.

Click the Sim3dLevelScriptActor blueprint. If you do not see the Sim3dLevelScriptActor
blueprint listed, use these steps to check that you have the MathWorksSimulation plugin
installed and enabled:

a In the Unreal Editor toolbar, select Settings > Plugins.

In the Plugins window, verify that the MathWorks Interface plugin is listed in the installed
window. If the plugin is not already enabled, select the Enabled check box.

If you do not see the MathWorks Interface plugin in this window, repeat step 3 in
“Configure Environment” on page 6-5 and reopen the editor from Simulink.

¢ Close the editor and reopen it from Simulink.
4  Close the Level Blueprint window.
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Create or Modify Scenes in Unreal Editor
After you open the editor, you can modify the scenes in your project or create new scenes.
Open Scene

In the Unreal Editor, scenes within a project are referred to as levels. Levels come in several types,
and scenes have a level type of map.

To open a prebuilt scene from the AutoVrtlEnv.uproject file, in the Content Browser pane
below the editor window, navigate to the Content > Maps folder. Then, select the map that
corresponds to the scene you want to modify.

Unreal Editor Map Vehicle Dynamics Blockset Scene
HwCurve Curved Road

Db1lLnChng Double Lane Change

BlackLake Open Surface

LargeParkinglLot Large Parking Lot

SimplelLot Parking Lot

HwStrght Straight Road

USCityBlock US City Block

USHighway US Highway

Note The AutoVrtlEnv.uproject file does not include the Virtual Mcity scene.

To open a scene within your own project, in the Content Browser pane, navigate to the folder that
contains your scenes.

Send Data to Scene

The Simulation 3D Message Get block retrieves data from the Unreal Engine 3D visualization
environment. To use the block, you must configure scenes in the Unreal Engine environment to send
data to the Simulink model.

For detailed information about using the block to send data to the scenes, see “Get Started
Communicating with the Unreal Engine Visualization Environment” on page 6-19.

Receive Data from Scene

The Simulation 3D Message Set block sends data to the Unreal Engine 3D visualization environment.
To use the block, you must configure scenes in the Unreal Engine environment to receive data from
the Simulink model.

For detailed information about using the block to receive data from the scene, see “Get Started
Communicating with the Unreal Engine Visualization Environment” on page 6-19.

Create New Scene

To create a new scene in your project, from the top-left menu of the editor, select File > New Level.
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Alternatively, you can create a new scene from an existing one. This technique is useful if you want to
use one of the prebuilt scenes in the AutoVtrlEnv project as a starting point for creating your own
scene. To save a version of the currently opened scene to your project, from the top-left menu of the
editor, select File > Save Current As. The new scene is saved to the same location as the existing
scene.

Add Assets to Scene

In the Unreal Editor, elements within a scene are referred to as assets. To add assets to a scene, you
can browse or search for them in the Content Browser pane at the bottom and drag them into the
editor window.

When adding assets to a scene that is in the AutoVrtlEnv project, you can choose from a library of
driving-related assets. These assets are built as static meshes and begin with the prefix SM . Search
for these objects in the Content Browser pane.

For example, to add a traffic cone to a scene in the AutoVrt1lEnv project:

In the Content Browser pane at the bottom of the editor, navigate to the Content folder.

In the search bar, search for SM_Cone. Drag the cone from the Content Browser into the editing
window. You can then change the position of the cone in the editing window or on the Details
pane on the right, in the Transform section.

The Unreal Editor uses a left-hand Z-up coordinate system, where the Y-axis points to the right. The
vehicle blocks in Vehicle Dynamics Blockset uses a right-hand Z-down coordinate system, where the
Y-axis points to the right. When positioning objects in a scene, keep this coordinate system difference
in mind.

For more information on modifying scenes and adding assets, see Unreal Engine 4 Documentation.

To migrate assets from the AutoVrtlEnv project into your own project file, see Migrating Assets in
the Unreal Engine documentation.

Use AutoVrtlEnv Project Lighting in Custom Scene

To use the lighting that comes installed with the AutoVrtlEnv project in Vehicle Dynamics Blockset,
follow these steps.

1  On the World Settings tab, clear Force no precomputed lighting.

T\ Details M World Settings

nputed Visibility
Precompute Visibility -

4 Game Mode



https://docs.unrealengine.com/en-US/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Browser/UserGuide/Migrate/index.html

Customize Scenes Using Simulink and Unreal Editor

2 Under Build, select Lighting Quality > Production to rebuild the maps with production
quality. Rebuilding large maps can take time.

5. p Al

Build Play Launch

Build Lighting Only

Run Simulation

Verify that the Simulink model and Unreal Editor are configured to co-simulate by running a test
simulation.

1 In the Simulink model, click Run.

Because the source of the scenes is the project opened in the Unreal Editor, the simulation does
not start. Instead, you must start the simulation from the editor.

2 Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene source
to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated vehicles and other assets in the Unreal
Engine 3D environment.

3 In the Unreal Editor, click Play. The simulation runs in the scene currently open in the Unreal
Editor. If your Simulink model contains vehicles, these vehicles drive through the scene that is
open in the editor.

To control the view of the scene during simulation, in the Simulation 3D Scene Configuration block,
select the vehicle name from the Scene view parameter. To change the scene view as the simulation
runs, use the numeric keypad in the editor. The table shows the position of the camera displaying the
scene, relative to the vehicle selected in the Scene view parameter.

To smoothly change the camera views, use these key commands.

Key Camera View
Back left
Back

Back right
Left

Internal

Right

Front left

N OO AW N -
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Key Camera View

8 Front View Animated GIF
9 Front right

0 Overhead

For additional camera controls, use these key commands.

Key Camera Control

Tab Cycle the view between all vehicles in the scene.

View Animated GIF

6-14



Customize Scenes Using Simulink and Unreal Editor

Key

Camera Control

Mouse scroll wheel

Control the camera distance from the vehicle.

View Animated GIF

Toggle a camera lag effect on or off. When you enable the lag effect, the
camera view includes:

» Position lag, based on the vehicle translational acceleration
* Rotation lag, based on the vehicle rotational velocity

This lag enables improved visualization of overall vehicle acceleration and
rotation.

View Animated GIF
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Key Camera Control

F Toggle the free camera mode on or off. When you enable the free camera
mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the vehicle.

View Animated GIF

To restart a simulation, click Run in the Simulink model, wait until the Diagnostic Viewer displays the
confirmation message, and then click Play in the editor. If you click Play before starting the
simulation in your model, the connection between Simulink and the Unreal Editor is not established,
and the editor displays an empty scene.

If you are co-simulating a custom project, to enable the numeric keypad, copy the
DefaultInput.ini file from the support package installation folder to your custom project folder.
For example, copy DefaultInput.ini from:

C:\ProgramData\MATLAB\SupportPackages\<MATLABRelease>\toolbox\shared\sim3dprojects\driving\AutoV
to:

C:\<yourproject>.project\Config

After tuning your custom scene based on simulation results, you can then package the scene into an

executable. For more details, see “Package Custom Scenes into Executable” on page 6-17.

See Also
Simulation 3D Scene Configuration | sim3d.Editor

External Websites
. Unreal Engine
. Unreal Engine 4 Documentation
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Package Custom Scenes into Executable

When you finish modifying a custom scene as described in “Customize Scenes Using Simulink and
Unreal Editor” on page 6-9, you can package the project file containing this scene into an executable.
You can then configure your model to simulate from this executable by using the Simulation 3D Scene
Configuration block. Executable files can improve simulation performance and do not require opening
the Unreal Editor to simulate your scene. Instead, the scene runs by using the Unreal Engine that
comes installed with Vehicle Dynamics Blockset.

Package Scene into Executable Using Unreal Editor

1

Open the project containing the scene in the Unreal Editor. You must open the project from a
Simulink model that is configured to co-simulate with the Unreal Editor.

In the Unreal Editor toolbar, select Settings > Project Settings to open the Project Settings
window.

In the left pane, in the Project section, click Packaging.

In the Packaging section, set or verify the options in the table. If you do not see all these
options, at the bottom of the Packaging section, click the Show Advanced expander

R

Packaging Option Enable or Disable
Use Pak File Enable

Cook everything in the project content |Disable
directory (ignore list of maps below)

Cook only maps (this only affects Enable
cookall)

Create compressed cooked packages Enable
Exclude editor content while cooking Enable

Specify the scene from the project that you want to package into an executable.

a In the List of maps to include in a packaged build option, click the Adds Element
button .

b Specify the path to the scene that you want to include in the executable. By default, the
Unreal Editor saves maps to the /Game/Maps folder. For example, if the /Game/Maps folder

has a scene named myScene that you want to include in the executable, enter /Game/Maps/
myScene.

¢ Add or remove additional scenes as needed.

Rebuild the lighting in your scenes. If you do not rebuild the lighting, the shadows from the light
source in your executable file are incorrect and a warning about rebuilding the lighting displays
during simulation. In the Unreal Editor toolbar, select Build > Build Lighting Only.

Close the Project Settings window.

In the top-left menu of the editor, select File > Package Project > Windows > Windows (64-
bit). Select a local folder in which to save the executable, such as to the root of the project file
(for example, C: /Local/myProject).
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Note Packaging a project into an executable can take several minutes. The more scenes that you
include in the executable, the longer the packaging takes.

Once packaging is complete, the folder where you saved the package contains a
WindowsNoEditor folder that includes the executable file. This file has the same name as the
project file.

Note If you repackage a project into the same folder, the new executable folder overwrites the
old one.

Suppose you package a scene that is from the myProject.uproject file and save the
executable to the C: /Local/myProject folder. The editor creates a file named
myProject.exe with this path:

C:/Local/myProject/WindowsNoEditor/myProject.exe

Simulate Scene from Executable in Simulink

To improve co-simulation performance, consider configuring the Simulation 3D Scene Configuration
block to co-simulate with the project executable.

1 In the Simulation 3D Scene Configuration block of your Simulink model, set the Scene source
parameter to Unreal Executable.

2 Set the File name parameter to the name of your Unreal Editor executable file. You can either
browse for the file or specify the full path to the file by using backslashes. For example:

C:\Local\myProject\WindowsNoEditor\myProject.exe
3 Set the Scene parameter to the name of a scene from within the executable file. For example:

/Game/Maps/myScene
4 Run the simulation. The model simulates in the custom scene that you created.

If you are simulating a scene from a project that is not based on the AutoVtrlEnv project, then the

scene simulates in full screen mode. To use the same window size as the default scenes, copy the
DefaultGameUserSettings.ini file from the support package installation folder to your custom

project folder. For example, copy DefaultGameUserSettings.ini from:
C:\ProgramData\MATLAB\SupportPackages\<MATLABrelease>\toolbox\shared\sim3dprojects\automotive\Au
to:

C:\<yourproject>.project\Config

Then, package scenes from the project into an executable again and retry the simulation.

See Also
Simulation 3D Scene Configuration
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Get Started Communicating with the Unreal Engine
Visualization Environment

You can set up communication with Unreal Engine by using the Simulation 3D Message Get and
Simulation 3D Message Set blocks:

* Simulation 3D Message Get receives data from the Unreal Engine environment.
* Simulation 3D Message Set sends data to the Unreal Engine environment.
To use the blocks and communicate with Unreal Engine, make sure you install the Vehicle Dynamics

Blockset Interface for Unreal Engine 4 Projects support package. For more information, see “Install
Support Package and Configure Environment” on page 6-5.

Next, follow these workflow steps to set up the Simulink model and the Unreal Engine environment
and run a simulation.

Workflow Description
“Set Up Simulink Model to Send and Configure the Simulation 3D Message Get and
Receive Data” on page 6-20 Simulation 3D Message Set blocks in Simulink to send

and receive the cone location from Unreal Editor. The
steps provides the general workflow for communicating
with the editor.

The Simulation 3D Message Get and Simulation 3D
Message Set blocks can send and receive these data
types: double, single, int8, uint8, int16, uintle,
int32, uint32, and Boolean. The Simulation 3D Actor
Transform Set and Simulation 3D Actor Transform Get
blocks can send and receive only the single data type.

Set Up Unreal “C++ Workflow: Set |Specific Unreal C++ workflow to send and receive
Engine to Send Up Unreal Engine to |Simulink cone location data.

and Receive Data |Send and Receive . . .
Data” on page 6-21 * Simulation 3D Message Get receives data from an

Unreal Engine environment C++ actor class. In this
example workflow, you use the block to receive the
cone location from Unreal Editor.

* Simulation 3D Message Set sends data to an Unreal
Engine C++ actor class. In this example, you use the
block to set the initial cone location in the Unreal
Editor.

To follow this workflow, you should be comfortable
coding with C++ in Unreal Engine 4.23. Make sure that
you have Visual Studio 2017 or newer installed on your
computer.

“Blueprint Workflow: |Generalized Unreal Editor blueprint workflow to send
Set Up Unreal Engine |and receive Simulink data.

to Send and Receive
Data” on page 6-29
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Workflow

Description

“Run Simulation” on page 6-34

After you set up the Simulink model and Unreal Editor
environment, run a simulation.

Set Up Simulink Model to Send and Receive Data

Step 1: Install Support Package

If you have already downloaded and installed Unreal Engine Version 4.23 and the Vehicle Dynamics
Blockset Interface for Unreal Engine 4 Projects support package, go to the next step.

To install and configure the support package, see “Install Support Package and Configure

Environment” on page 6-5.

Step 2: Set Up Simulink Model

Open a new Simulink model. Connect the blocks as shown.

!

&

Simulation 30 Scene Configuration

054
100 10 50] » single plwitehtsg |2 2 3 | wpe
381
Constant Data Type Conversion
Simulation 30 Meszsage Set
N

m oS
Lol

!

4
3 ReadMsg
|1
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Step 3: Configure Blocks

Display

Use these block settings to configure blocks to send and receive cone data from the Unreal Editor.
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Block Parameter Settings

Constant ¢ Constant value — [100,10,50]

Sets the initial cone location in the Unreal Editor coordinate
system (in cm, left-handed, in Z-up coordinate system)

* Interpret vector parameters as 1-D — off
*  Output data type — single

Data Type Conversion *  Output data type — single
Simulation 3D Scene * Scene Source — Unreal Editor
Configuration .

Project — Your Project Path
\TestSim3dGetSet.uproject

* Open Unreal Editor — Select to open the editor

Simulation 3D Message Get |¢ Signal name, SigName — ConelLocGet

* Data type, DataType — single
* Message size, MsgSize — [1 3]
* Sample time — -1

Simulation 3D Message Set * Signal name, SigName — ConelLocSet

¢ Sample time — -1

C++ Workflow: Set Up Unreal Engine to Send and Receive Data

Step 4: Open Unreal Editor in Editor Mode

1

In the Unreal Editor, on the Edit tab, select Plugins. Make sure that the MathWorks
Interface plugin is enabled. If prompted, restart the Unreal Editor.

Create an Unreal Engine C++ project. Name it TestSim3dGetSet. For steps on how to create C
++ project, see Programming Quick Start.

In the Unreal Editor, click the Edit tab in the top left corner. Select Plugins and make sure that
the MathWorks Interface plugin is enabled. If the MathWorks Interface plugin is disabled,
enable it and restart Unreal Editor, if prompted.

Close the Unreal.
If Visual Studio is not open, open it.
Add the MathWorksSimulation dependency to the TestSim3dGetSet project build file.
* The project build file, TestSim3dGetSet.Build.cs, is located in this
folder: .. .\TestSim3dGetSet\Source\TestSim3dGetSet.

* In the build file, TestSim3dGetSet.Build. cs, edit the line 11 to add the
“MathWorksSimulation” dependency:

PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject",
"Engine", "InputCore", "MathWorksSimulation"});

Save the change. In Visual Studio, rebuild the TestSim3dGetSet project. Close Visual Studio.

Tip Before rebuilding the project in Visual Studio, make sure that Unreal is not open.
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8 Start MATLAB. Change the current folder to the location of the Unreal Engine
TestSim3dGetSet project.

9 In MATLAB, open the project:

editor = sim3d.Editor('TestSim3dGetSet.uproject');
editor.open();

Step 5: Create Actor Class

1 In the Unreal Editor, from the MathWorksSimulation C++ classes directory, select Sim3dActor.

== Content Browser

s AddNew ~ L Imp [ Save All & = | I MathWorksSimulation C++ Classes » MathWorksSimulati

¥ LEFICCR N “carch Public

 mm MathWorksSimulation Content
4 g MathWorksSimulation C++ Classes
4 fy Math‘_;*.fc:rk.’:‘.Simulatic:n
T
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2 Name the new Sim3dActor SetGetActorLocation. Select Public. Click Create Class.
3 Close the Unreal Editor.

Step 6: Open SetGetActorLocation.h

Visual Studio opens with new C++ files in the project folder:

 SetGetActorLocation.h
* SetGetActorLocation.cpp

Make sure you close the Unreal Editor.

In Visual Studio, build the solution TestSim3dGetSet:

1 In the Solution Explorer, right-click Solution 'TestSim3dGetSet' (2 projects).
2 Select Build Solution.
3 After the solution builds, open SetGetActorLocation.h. Edit the file as shown.

Replacement Code: SetGetActorLocation.h

This is the replacement code for SetGetActorLocation.h.
// Copyright 2019 The MathWorks, Inc.
#pragma once

#include "Sim3dActor.h"
#include "SetGetActorLocation.generated.h"

UCLASS ()
class TESTSIM3DGETSET API ASetGetActorLocation : public ASim3dActor

GENERATED_BODY ()

void *SignalReader;
void *SignalWriter;

public:
// Sets default values for this actor's properties
ASetGetActorLocation();

virtual void Sim3dSetup() override;
virtual void Sim3dRelease() override;
virtual void Sim3dStep(float DeltaSeconds) override;

b
Step 7: Open SetGetActorLocation.cpp
Open SetGetActorLocation. cpp and replace the block of code.
Replacement Code: Set Pointer to Parameter

This code allows you to set a pointer to the parameter Signal Name parameter for the Simulink
blocks Simulation 3D Message Set and Simulation 3D Message Get, respectively.

// Sets default values

ASetGetActorLocation: :ASetGetActorLocation():SignalReader(nullptr), SignalWriter(nullptr)
{

}
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Replacement Code: Access Actor Tag Name

The following code allows you to access the tag name of this actor after it is instantiated in the scene
with an assigned tag name. The code also initializes the pointers SignalReader and
SignalWriter, to initiate a link between Unreal Editor and Simulink. The variables represent these
block Signal Name parameter values:

+ SignalReaderTag — Simulation 3D Message Set
* SignalWriterTag — Simulation 3D Message Get

void ASetGetActorLocation::Sim3dSetup()

{
Super::Sim3dSetup();
if (Tags.Num() !'= 0) {
unsigned int numElements = 3;
FString tagName = Tags.Top().ToString();

FString SignalReaderTag = tagName;
SignalReaderTag.Append (TEXT("Set"));
SignalReader = StartSimulation3DMessageReader(TCHAR TO ANSI(*SignalReaderTag), sizeof(float)*numElements);

FString SignalWriterTag = tagName;
SignalWriterTag.Append (TEXT("Get"));
SignalWriter = StartSimulation3DMessageWriter(TCHAR TO ANSI(*SignalWriterTag), sizeof(float)*numElements);

}
}

Additional Code: Read and Write Data During Run Time

Add this code to allow Unreal Engine to read the data value set by Simulation 3D Message Set and
then write back to Simulation 3D Message Get during run time. Unreal Engine uses this data to set
the location value of the actor.

void ASetGetActorLocation::Sim3dStep(float DeltaSeconds)

{

unsigned int numElements = 3;

float array[3];

int statusR = ReadSimulation3DMessage(SignalReader, sizeof(float)*numElements, array);

FVector NewLocation;

NewLocation.X = array[0];

NewLocation.Y = array[1];

NewLocation.Z = array[2];

SetActorLocation(NewLocation);

float fvector[3] = { NewLocation.X, NewLocation.Y, NewLocation.Z };

int statusW = WriteSimulation3DMessage(SignalWriter, sizeof(float)*numElements ,fvector);
}

Additional Code: Stop Simulation

Add this code so that Unreal Engine stops when you press the Simulink stop button. The code
destroys the pointer SignalReader and SignalWriter.

void ASetGetActorLocation::Sim3dRelease()
{

Super: :Sim3dRelease();

if (SignalReader) {
StopSimulation3DMessageReader(SignalReader);

}

SignalReader = nullptr;

if (SignalWriter) {
StopSimulation3DMessageWriter(SignalWriter);
}

SignalWriter = nullptr;
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Entire Replacement Code: SetGetActorLocation.cpp

This is the entire replacement code for SetGetActorLocation. cpp.

// Copyright 2019 The MathWorks, Inc.
#include "SetGetActorLocation.h"

// Sets default values

ASetGetActorLocation: :ASetGetActorLocation():SignalReader(nullptr), SignalWriter(nullptr)
{

}

void ASetGetActorLocation::Sim3dSetup()
{
Super: :Sim3dSetup();
if (Tags.Num() !'= 0) {
unsigned int numElements = 3;
FString tagName = Tags.Top().ToString();

FString SignalReaderTag = tagName;
SignalReaderTag.Append (TEXT("Set"));
SignalReader = StartSimulation3DMessageReader(TCHAR TO ANSI(*SignalReaderTag), sizeof(float)*numElements);

FString SignalWriterTag = tagName;
SignalWriterTag.Append (TEXT("Get"));
SignalWriter = StartSimulation3DMessageWriter(TCHAR TO ANSI(*SignalWriterTag), sizeof(float)*numElements);

}
}
void ASetGetActorLocation::Sim3dStep(float DeltaSeconds)
{
unsigned int numElements = 3;
float array[3];
int statusR = ReadSimulation3DMessage(SignalReader, sizeof(float)*numElements, array);
FVector NewLocation;
NewLocation.X = array[0];
NewLocation.Y = array[1];
NewLocation.Z = array[2];
SetActorLocation(NewLocation);
float fvector[3] = { NewLocation.X, NewLocation.Y, NewLocation.Z };
int statusW = WriteSimulation3DMessage(SignalWriter, sizeof(float)*numElements ,fvector);
}
void ASetGetActorLocation::Sim3dRelease()
{
Super: :Sim3dRelease();
if (SignalReader) {
StopSimulation3DMessageReader(SignalReader);
}
SignalReader = nullptr;
if (SignalWriter) {
StopSimulation3DMessageWriter(SignalWriter);
}
SignalWriter = nullptr;
}

Step 8: Build the Visual Studio Project and Open Unreal Editor

Press F5 on the keyboard to run the Visual Studio solution TestSim3dGetSet. The Unreal Editor
opens.

Note In the Unreal Editor, save the current level by clicking Save Current (located in the top left)
and name it TestMap. Add this level as default to Project Settings by clicking on Edit > Project
Settings > Maps&Modes. Then select TestMap as the default value for the Editor Startup Map and
Game Default Map. Close Project Settings to save the default values.
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u

'& Project Settings

Search

Project - Maps & Modes

]_' These settings aved in DefaultEngine.ini, which is currently writable

4 pefault Modes

4 pDefault Maps

Editor Startup Map

Game Default Map

4 Local Multiplayer
Use

Two Fl een Layout

S EET R
File Edit Window Help
47 Modes

_"""l-I' ‘ Y | -T. -
% ® IR

. SetGetActior Location

Step 9: Check Actor

On the World Outliner tab, check that the new instantiated actor, SetGetActorLocationl, is
listed.
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Step 10: Add Mesh

Click on the actor that you created in “Step 9: Check Actor” on page 6-26.

1

1

In the Details panel, click on Add Component to add a mesh to the actor SetConeLocationl.
Choose Cone as the default mesh.

Find the property tags for actor SetConeLocationl. Add a tag by clicking on the plus sign next
to 0 Array elements. Name it ConelLoc.

Details

L} SetGetActorLocation] Open SetGetActorLocation

+ Add Component ~ 25 Blueprint/Add Script

4 Cor

rve Source

+ @

nponent Tags 1 Array elements e . @ |
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Step 11: Set Cone Location

On the Details tab, click Cone. Set the coneto X =0.0,Y=0.0,and Z = 0.0. Also set the actor
Mobility property to Movable.

i) Details @ World Settings

LI SetGetActorLocation] Open SetGetActorLocation

4+ Add Component - o Blueprint/Add Script

doo Rloo Hoo
goo  oRjoor  ~Roor
doo Moo Hoo N8

] Statec .'.T Slaticnar AT

4 Static Mesh

Step 12: Set Parent Class and Save Scene
Set the parent class.

1 Under Blueprints, click Open Level Blueprint, and select Class Settings.

= World outliner

2 In the Class Options, set Parent Class to Sim3dLevelScriptActor.
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o [l

vl | EHEEEERUTE

w

4 Blueprint Options
Save the Unreal Editor scene.
Step 13: Run Simulation
Run the simulation. Go to “Run Simulation” on page 6-34.
Reference: C++ Functions for Sending and Receiving Simulink Data

Call these C++ functions from Sim3dSetup, Sim3dStep, and Sim3dRelease to send and receive
Simulink data.

To C++ Functions
Receive data StartSimulation3DMessageReader

ReadSimulation3DMessage

StopSimulation3DMessageReader

Send data StartSimulation3DMessageWriter

WriteSimulation3DMessage

StopSimulation3DMessageWriter

Blueprint Workflow: Set Up Unreal Engine to Send and Receive Data
Step 4: Configure Scenes to Receive Data

To use the Simulation 3D Message Set block, you must configure scenes in the Unreal Engine
environment to receive data from the Simulink model:

1 In the Unreal Editor, instantiate the Sim3DGet actor that corresponds to the data type you want
to receive from the Simulink model. This example shows the Unreal Editor Sim3DGet data types.
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5

2y Modes

gSim 2d Get Float

8im 2d Get Integer

Specify an actor tag name that matches the Simulation 3D Message Set block Signal name
parameter.

Navigate to the Level Blueprint.

Find the blueprint method for the Sim3DGet actor class based on the data type and size that you
want to receive from the Simulink model.

For example, in Unreal Editor, this diagram shows that Read Scalar Integer is the method
for Sim3DGetInteger actor class to receive int32 data type of size scalar.

_f'-ﬁad Scalar 1r_1teger

B (D

" ® sim3dGetinteger Target Data

Status

Compile and save the scene.

Step 5: Configure Scenes to Send Data

To configure scenes in the Unreal Engine environment to send data to the Simulink model:

1
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1y Modes

PP I

. Sim 3d Set Boolean

. 8im 3d Set Float

. Sim 3d Set Integer

2 Specify an actor tag name that matches the Simulation 3D Message Get block Signal name
parameter.

3 Navigate to the Level Blueprint.
Find the blueprint method for the Sim3DSet actor class based on the data type and size specified
by the Simulation 3D Message Get block Data type and Message size parameters.

For this example, the array size is 3. The Unreal Editor diagram shows that Write Array

Float is the method for the Sim3DSetFloat3 actor class that sends float data type of array size
3.

”® sm3dSetFloat3  Write Array Float

5 Compile and save the scene.

Note Optionally, for better performance, set Read Array Float Max Num Elements to Num E1 in
the Actor Blueprint.
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» Sim3dGetFloat3
® sim3dSetFloat3

18 actors (1 selected)

& world SEHii'Il;IE i Details

Sim3dGetFloat3

+ Add Component ~

Search Components
_

Search Details

Mathworks Sim 3d Lib

Read Array Float Max Num Elements

@ Sim3d0etFloat3

(_- Event BeginPlay

» f* Pead Array Float

£ Evemt Tick

Step 6: Create Blueprint
In the Unreal Editor, create a level blueprint connecting the Get and Set actors.
1  Set the actor tag values.

* Sim3dGetFloatl — Simulation 3D Message Set block Signal name, SigName parameter
value, for example ConeLocSet

* Sim3dSetFloatl — Simulation 3D Message Get block Signal name, SigName parameter
value, for example ConeLocGet

2 Set the parent class.

a  Under Blueprints, click Open Level Blueprint, and select Class Settings.
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Blueprints

Mew

b In the Class Options, set Parent Class to Sim3dLevelScriptActor.

..

LAEEERITOR] | Clas:

L 4

3 In the level blueprint, make the connections, for example:

& Coneloc

[ Read Vector Float

Target

[ Write Vector Float

> Event Tick
=—L p

Step 7: Run Simulation

Run the simulation. Go to “Run Simulation” on page 6-34.
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Run Simulation

After you configure the Simulink model and Unreal Editor environment, you can run the simulation.

Note At the BeginPlay event, Simulink does not receive data from the Unreal Editor. Simulink
receives data at Tick events.

Run the simulation.

1 In the Simulink model, click Run.
Because the source of the scenes is the project opened in the Unreal Editor, the simulation does
not start.

2 Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene source
to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated the vehicles and other assets in the Unreal
Engine 3D environment.

3 Inthe Unreal Editor, click Play. The simulation runs in the scene currently open in the Unreal
Editor.

You can send and receive these data types: double, single, int8, uint8, int16, uintl6, int32,
uint32, boolean. The code in “Step 7: Open SetGetActorLocation.cpp” on page 6-23 reads single
data type values (or float values) from Simulink.

See Also
ASim3dActor | Sim3dRelease | Sim3dSetup | Sim3dStep | Simulation 3D Message Get |
Simulation 3D Message Set | Simulation 3D Scene Configuration

More About

. “Animate Custom Actors in the Unreal Editor” on page 8-21

. “Place Cameras on Actors in the Unreal Editor” on page 8-10

. “Send and Receive Double-Lane Change Scene Data” on page 3-71

External Websites
. Unreal Engine
. Unreal Engine 4 Documentation


https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://docs.unrealengine.com/en-us
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Scene Interrogation with Camera and Ray Tracing Reference
Application

Interrogate a 3D scene with a vehicle dynamics model by using a camera and ray tracing reference
application project.

To create or modify other scenes, you need the Vehicle Dynamics Blockset Interface for Unreal
Engine 4 Projects support package. For more information, see “Customize 3D Scenes for Vehicle
Dynamics Simulations” on page 6-3.

For the minimum hardware required to run the example, see “3D Visualization Engine Requirements
and Limitations” on page 8-6.

For more information about the reference application, see “Scene Interrogation in 3D Environment”

Controls ] Dynamics and Controls Displays
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[ -
a8
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-60 &0 — 1 WhiAng? (3 P g o ]
f xdot He—] -
b Steering | - L RET
-80 an i |’ ' ydot He-—] <psi>
SteerValus l:l_. Acj Front Force | FwF psi H=——
|
|- (oo dffe——enfl-0 | 3
I O
| | i "l | — ] I l Fzr T
R ! Jrm Fear Farce » FwR
Accelerator:Valus l ) FzR H+—] ?
I T I T | Powertrain & Driveline Vehicle Body 3DOF Dual Track Help
a 02 0.4 0.8 0.8 1
Brake:Values
ion 30 Scene G i
Sensors
Translation | Translation
Rotation | Rotation
Scale P Scale
Simulation 30 Actor Transform Get TransformDisplay
ImageDisplay

Simulation 30 Camera Get

See Also

Simulation 3D Actor Transform Get | Simulation 3D Camera Get | Simulation 3D Scene Configuration

Capyright 2017-2019 The Mathiarks, Inc.

| Simulation 3D Vehicle with Ground Following | Vehicle Body 3DOF

More About

. “3D Visualization Engine Requirements and Limitations” on page 8-6

. “How 3D Simulation for Vehicle Dynamics Blockset Works” on page 8-8
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External Websites
. Unreal Engine


https://www.unrealengine.com/en-US/what-is-unreal-engine-4
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Double Lane Change Reference Application

Simulate a full vehicle dynamics model undergoing a double-lane change maneuver according to
standard ISO 3888-2. You can create your own versions, establishing a framework to test that your
vehicle meets the design requirements under normal and extreme driving conditions. Use the
reference application for vehicle dynamics ride and handling analysis and chassis controls
development, including yaw stability and lateral acceleration limits.

For more information about the reference application, see “Double-Lane Change Maneuver” on page
34,

Visualization

Rl

>

Lane Change Reference

Generator |

Driver Commands
Predictive Driver

> e Rt >

Controllers.

Environmeent »

Sensors

Help

Passenger Vehicle

Copyright 2018-2020 The MathWorks, Inc.

See Also
3D Engine | Mapped SI Engine | Predictive Driver | Vehicle Terrain Sensor

Related Examples

. “Send and Receive Double-Lane Change Scene Data” on page 3-71
. “Yaw Stability on Varying Road Surfaces” on page 1-16

More About

. “Coordinate Systems in Vehicle Dynamics Blockset” on page 2-2
. Simulation Data Inspector
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Swept-Sine Steering Reference Application

Simulate a full vehicle dynamics model undergoing a swept-sine steering maneuver. You can create
your own versions, providing a framework to test that your vehicle meets the design requirements
under normal and extreme driving conditions. Use the reference application for vehicle dynamics ride
and handling analysis and chassis controls development, including the dynamic steering response.

For more information about the reference application, see “Swept-Sine Steering Maneuver” on page
3-22.

h

~ Wl

VehFdibk Ref

h

Visualization

Swept Sine Reference

] 1 e .""-
Generator Driver Commands L

Predictive Driver

A,

4

. o

Controllers
Help Environmeant

Sensors

Passenger Wehicle

¥
—

Caopyright 2018-2020 The MathWarks, Inc.

See Also
3D Engine | Longitudinal Driver | Mapped SI Engine | Vehicle Terrain Sensor

Related Examples
. “Frequency Response to Steering Angle Input” on page 1-49

More About

. “Coordinate Systems in Vehicle Dynamics Blockset” on page 2-2
. Simulation Data Inspector
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Increasing Steering Reference Application

Simulate a full vehicle dynamics model undergoing a slowly increasing steering maneuver according
to standard SAE ]J266. You can create your own versions, establishing a framework to test that your

vehicle meets the design requirements under normal and extreme driving conditions. Use the

reference application for lateral vehicle dynamics ride and handling analysis and chassis controls

development, including the steering response.

For more information about the reference application, see “Slowly Increasing Steering Maneuver” on

page 3-32.

h J

WehFdbk Ref

\isualization

3D Engine | Longitudinal Driver | Mapped SI Engine | Vehicle Terrain Sensor

Related Examples
. “Vehicle Steering Gain at Different Speeds” on page 1-28

More About
. “Coordinate Systems in Vehicle Dynamics Blockset” on page 2-2
. Simulation Data Inspector

Slowly Increasing Steer
Driver Commands ol
Predictive Driver g
P
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Sensors
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Copyright 2018-2020 The MathWaorks, Inc.




Constant Radius Reference Application

Constant Radius Reference Application

Simulate a full vehicle dynamics model undergoing a constant radius maneuver. You can create your
own versions, providing a framework to test that your vehicle meets the design requirements under
normal and extreme driving conditions. Use the reference application for vehicle dynamics ride and
handling analysis and chassis controls development, including the dynamic steering response.

For more information about the reference application, see “Constant Radius Maneuver” on page 3-43.
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Copyright 2018-2020 The MathWorks, Inc.

References

[11]266 199601. Steady-State Directional Control Test Procedures for Passenger Cars and Light
Trucks. Warrendale, PA: SAE International, 1996.

[2]1 ISO 4138:2012. Passenger cars — Steady-state circular driving behaviour — Open-loop test
methods. Geneva: I1SO, 2012.

See Also
3D Engine | Driver Commands | Reference Generator

Related Examples
. “Vehicle Lateral Acceleration at Different Speeds” on page 1-38

More About

. “Coordinate Systems in Vehicle Dynamics Blockset” on page 2-2
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. Simulation Data Inspector



Kinematics and Compliance Virtual Test Laboratory Reference Application

Kinematics and Compliance Virtual Test Laboratory Reference
Application
Generate optimized suspension parameters for the vehicle dynamics mapped suspension blocks.

Generate Mapped Suspension from Spreadsheet Data uses Model-Based Calibration Toolbox™
to generate calibrated suspension parameters from measured vertical force and suspension geometry
data.

Generate Mapped Suspension from Simscape Suspension uses a Simscape™ Multibody™
suspension system to generate calibrated suspension parameters for the mapped suspension blocks.

Compare Mapped and Simscape Suspension Responses compares the mapped suspension with
the Simscape Multibody suspension results.

For more information about the reference application, see “Kinematics and Compliance Virtual Test
Laboratory” on page 3-62.

Virtual Kinematics and Compliance Test Laboratory

DoE Chirp Test
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See Also
Independent Suspension - Mapped | Solid Axle Suspension - Mapped
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More About

. Simulation Data Inspector
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Three-Axle Tractor Towing a Three-Axle Trailer

Three-Axle Tractor Towing a Three-Axle Trailer

This example shows how to use a planar hitch to tow a three-axle trailer with a three-axle tractor. To
steer and drive the tractor, the model uses a sinusoidal wave steering input and an axle torque

applied to the rear wheels.

To view the simulation in the 3D visualization environment, use the Vehicle Monitor 3D variant. Right-
click the Vehicle Monitor block and select Variant > Label Mode Active Choice > Vehicle Monitor
3D. See Run Simulation in 3D Visualization Environment.

To implement the tractor and trailer, by default, the three degree-of-freedom (DOF) model uses the
Vehicle Body 3DOF and Trailer Body 3DOF blocks. You can use the Toggle Between 3DOF and
6DOF button to configure a six DOF model that uses the Vehicle Body 6 DOF block, Trailer Body
6DOF block, and a 6DOF hitch subsystem. See Six Degree-of-Freedom Model.

Model

Three-Axle Tractor Towing Three-Axle Trailer

A Torqua

\ 207,

zzzzz N
| Tradet

Three A Tractor

Three-Axie Traller

Run Simulation

Copyright 2020 The MathWorks, Inc.

On the Simulation tab, click Run. As the simulation runs, the Vehicle Position window provides the

trace of the tractor and trailer.
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Three-Axle Tractor Subsystem

40

To steer and drive the tractor, the three-axle tractor subsystem uses a sinusoidal wave steering input
and an axle torque applied to the rear wheels. The subsystem includes models for the wheels,
suspension, and vehicle body.
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Three-Axle Tractor Towing a Three-Axle Trailer

Three-Axle Trailer Subsystem

The three-axle trailer subsystem includes models for the wheels, suspension, and the trailer body.
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The three DOF hitch model allows relative longitudinal, lateral, and yaw motion between the tractor
and trailer. To limit the longitudinal and lateral motion, the hitch model implements a stiff spring. The
spring force is a function of the planar distance from the tractor hitch location to the trailer hitch
location in the inertial reference frame. The resulting spring force approximately limits the relative
motion between the tractor and trailer to yaw rotation about a vertical axis at the hitch connection
point. The hitch model transfers the vertical hitch force from the trailer to the tractor.

The six DOF hitch model accounts for relative translation between the tractor and trailer hitches. To

transmit the forces between the tractor and trailer hitches, the hitch model implements stiff

translational springs in three dimensions. The effects of hitch moments due to the relative rotations
of the hitches are considered negligible.
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Run Simulation in 3D Visualization Environment

|||-|

Vehicle Hitch

Trailer Hitch

In the Vehicle Monitor subsystem, use the Vehicle Monitor 3D variant to visualize the tractor and

C . >
iehicle
<psi= >
<> >
<= >
Trailar N
<psi= v
=Fz= >
trailer in the 3D simulation environment.
1
Vehicle Monitor 3D.
Variant
- Mask
Library L
=S Signals & Ports
s | I}_m:'l-': Requirements
Coverage
= Imm Maodel Advisor

Right-click the Vehicle Monitor block and select Variant > Label Mode Active Choice >

Open

Label Mode Active Choice

Open in Variant Manager

Vehicle Monitor 2D (Vehicle Monitor 2D)
~  Vehicle Monitor 3D (Vehicle Monitor 30) h’

2. Click Run. In the AutoVrtlEnv window, view the tractor and trailer in the 3D visualization
environment. You can use the key numbers to change camera views of the tractor and trailer. For

example, press 7 for a front left camera view.
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Six Degree-of-Freedom Model

To implement a 6 DOF tractor, trailer and hitch model, click Toggle Between 3DOF and 6DOF.
Then, on the Simulation tab, click Run.
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To view the simulation in the 3D visualization environment, use the Vehicle Monitor 3D variant.

See Also
Trailer Body 3DOF | Trailer Body 6DOF | Vehicle Body 3DOF | Vehicle Body 6DOF

More About

“Two-Axle Tractor Towing a Two-Axle Trailer” on page 7-17

7-16



Two-Axle Tractor Towing a Two-Axle Trailer

Two-Axle Tractor Towing a Two-Axle Trailer

This example shows how to use a hitch to tow a two-axle trailer with a two-axle tractor. To steer and
drive the tractor, the model uses a sinusoidal wave steering input and an axle torque applied to the
rear wheels.

To implement the tractor and trailer, by default, the three degree-of-freedom (DOF) model uses the
Vehicle Body 3DOF and Trailer Body 3DOF blocks. You can use the Toggle Between 3DOF and
6DOF button to configure a six DOF model that uses the Vehicle Body 6 DOF block, Trailer Body
6DOF block, and a 6DOF hitch subsystem. See Six Degree-of-Freedom Model.

Model

Two-Axle Vehicle Towing Two-Axle Trailer

Vehice
| Trsdet
Vahicla Monitor

by
A
|
|
'
"-@‘
'

Toro-Axl

Run Simulation

On the Simulation tab, click Run. As the simulation runs, the Vehicle Position window provides the
trace of the tractor and trailer.
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Two-Axle Vehicle Subsystem

To steer and drive the tractor, the two-axle tractor subsystem uses a sinusoidal wave steering input
and an axle torque applied to the rear wheels. The subsystem includes models for the wheels,

suspension, and vehicle body.
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Two-Axle Trailer Subsystem

The two-axle trailer subsystem includes models for the wheels, suspension, and the trailer body.
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Trailer Body

Vahicke

Hitch Subsystem

The three DOF hitch model allows relative longitudinal, lateral, and yaw motion between the tractor
and trailer. To limit the longitudinal and lateral motion, the hitch model implements a stiff spring. The
spring force is a function of the planar distance from the tractor hitch location to the trailer hitch
location in the inertial reference frame. The resulting spring force approximately limits the relative
motion between the tractor and trailer to yaw rotation about a vertical axis at the hitch connection
point. The hitch model transfers the vertical hitch force from the trailer to the tractor.

The six DOF hitch model accounts for relative translation between the tractor and trailer hitches. To
transmit the forces between the tractor and trailer hitches, the hitch model implements stiff
translational springs in three dimensions. The effects of hitch moments due to the relative rotations
of the hitches are considered negligible.
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Vehicle Hitch

Trailer Hitch

To implement a six DOF tractor, trailer and hitch model, click Toggle Between 3DOF and 6DOF.

Then, on the Simulation tab, click Run.
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See Also

Trailer Body 3DOF | Trailer Body 6DOF | Vehicle Body 3DOF | Vehicle Body 6DOF
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More About
. “Three-Axle Tractor Towing a Three-Axle Trailer” on page 7-11
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8 3D Simulation

3D Simulation for Vehicle Dynamics Blockset

Vehicle Dynamics Blockset provides a co-simulation framework that models driving algorithms in
Simulink and visualizes their performance in a 3D environment. This 3D simulation environment uses
the Unreal Engine from Epic Games.

Ul
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8-2

Simulink blocks related to the 3D simulation environment can be found in the Vehicle Dynamics
Blockset > Vehicle Scenarios > Sim3D block library. These blocks provide the ability to:

* Configure prebuilt scenes in the 3D simulation environment.

* Place and move vehicles within these scenes.

» Set up cameras the vehicles.

* Simulate camera outputs based on the environment around the vehicle.

This simulation tool is commonly used to supplement real data when developing, testing, and
verifying the vehicle performance of automated driving algorithms. In conjunction with a vehicle
model, you can use these blocks to perform realistic closed-loop simulations that encompass the
entire automated driving stack, from perception to control.

For more details on the simulation environment, see “How 3D Simulation for Vehicle Dynamics
Blockset Works” on page 8-8.

3D Simulation Blocks
Scenes

To configure a model to co-simulate with the 3D simulation environment, add a Simulation 3D Scene
Configuration block to the model. Using this block, you can choose from a set of prebuilt 3D scenes
where you can test and visualize your vehicle performance. The following image is from the Virtual
Mcity scene.



3D Simulation for Vehicle Dynamics Blockset

The toolbox includes these scenes.

Scene Description

Straight Road Straight road segment

Curved Road Curved, looped road

Parking Lot Empty parking lot

Double Lane Change Straight road with barrels and traffic signs that
are set up for executing a double lane change
maneuver

Open Surface Flat, black pavement surface with no road objects

US City Block City block with intersections, barriers, and traffic
lights

US Highway Highway with cones, barriers, traffic lights, and
traffic signs

Large Parking Lot Parking lot with parked cars, cones, curbs, and
traffic signs

Virtual Mcity City environment that represents the University
of Michigan proving grounds (see Mcity Test
Facility); includes cones, barriers, an animal,
traffic lights, and traffic signs

If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package,
then you can modify these scenes or create new ones. For more details, see “Customize 3D Scenes for
Vehicle Dynamics Simulations” on page 6-3.
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Vehicles, Tractors, and Trailers

To define a virtual vehicle in a scene, add a Simulation 3D Vehicle with Ground Following, Simulation
3D Vehicle, Simulation 3D Tractor, or Simulation 3D Trailer block to your model. Using the blocks,
you can control the movement of the vehicle by supplying the X, Y, and yaw values that define its
position and orientation at each time step.

You can also specify the color and type of vehicle. The toolbox includes these vehicle types:

* Box Truck

* Hatchback

* Muscle Car

* Sedan

* Small Pickup Truck

* Sport Utility Vehicle
* Conventional Tractor
* Two-Axle Trailer

* Three-Axle Trailer

Communication

You can define virtual sensors and attach them at various positions on the vehicles. The toolbox
includes these sensor modeling and configuration blocks.

Block Description

Simulation 3D Camera Get Provides an interface to an ideal camera in the
3D visualization environment. The image output
is a red, green, and blue (RGB) array.

Simulation 3D Actor Transform Get Gets the actor translation, rotation, and scale for
the Simulink simulation environment.

Simulation 3D Actor Transform Set Sets the actor translation, rotation, and scale in
the Unreal Engine 3D visualization environment

Simulation 3D Message Get Retrieves data from the Unreal Engine 3D
visualization environment.

Simulation 3D Message Set Sends data to the Unreal Engine 3D visualization
environment.

Algorithm Testing and Visualization

Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects 3D simulation blocks provide the
tools for testing and visualizing path planning, vehicle control, and perception algorithms.

Closed-Loop Systems

After you design and test a perception system within the 3D simulation environment, you can then
use it to drive a control system that actually steers a vehicle. In this case, rather than manually set up
a trajectory, the vehicle uses the perception system to drive itself. By combining perception and
control into a closed-loop system in the 3D simulation environment, you can develop and test more
complex algorithms, such as lane keeping assist and adaptive cruise control.
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See Also

More About

. “Get Started Communicating with the Unreal Engine Visualization Environment” on page 6-19
. “How 3D Simulation for Vehicle Dynamics Blockset Works” on page 8-8
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3D Visualization Engine Requirements and Limitations

8-6

Vehicle Dynamics Blockset provides an interface to a 3D simulation environment that is visualized
using the Unreal Engine from Epic Games. Version 4.23 of this visualization engine comes installed
with Vehicle Dynamics Blockset. When simulating in the 3D environment, keep these requirements
and limitations in mind.

Software Requirements

To use the Vehicle Dynamics Blockset 3D visualization engine, consider these minimum hardware
requirements:

« A Windows® 64-bit platform. If you do not enable the 3D visualization engine, Vehicle Dynamics
Blockset runs on Windows, Mac, and Linux® 64-bit platforms.
* Visual Studio 2017.

« Microsoft® DirectX®. If it is not already installed on your machine, Vehicle Dynamics Blockset
prompts you to install the software the first time you enable 3D visualization.

If you are customizing scenes, verify that your Unreal Engine project is compatible with the Unreal
Engine version supported by your MATLAB release.

MATLAB Release Unreal Engine Version
R2018a — R2019b 4.19
R2020a — R2020b 4.23

Minimum Hardware Requirements

To use the Vehicle Dynamics Blockset 3D visualization engine, consider these minimum hardware
requirements:

* Graphics card (GPU) — Virtual reality-ready with 8 GB of on-board RAM

* Processor (CPU) — 2.60 GHz

* Memory (RAM) — 12 GB

Limitations

The 3D visualization engine and blocks do not support:

* Code generation.
* Model reference.
* Multiple instances of the Simulation 3D Scene Configuration block.

* Multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D
block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set),
specify the same Tag for actor in 3D scene, Actortag parameter.

* Parallel simulations.
* Rapid accelerator mode.



3D Visualization Engine Requirements and Limitations

In addition, when using these blocks in a closed-loop simulation, all 3D simulation environment blocks
must be in the same subsystem.

See Also
Simulation 3D Scene Configuration

More About
. “How 3D Simulation for Vehicle Dynamics Blockset Works” on page 8-8
. “Scene Interrogation in 3D Environment” on page 3-15

External Websites
. Unreal Engine
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How 3D Simulation for Vehicle Dynamics Blockset Works

The vehicle dynamics models run programmable maneuvers in a photorealistic 3D visualization
environment. Vehicle Dynamics Blockset integrates the 3D simulation environment with Simulink so
that you can query the world around the vehicle for virtually testing perception, control, and planning
algorithms. The Vehicle Dynamics Blockset visualization environment uses the Unreal Engine by Epic
Games.

Understanding how this simulation environment works can help you troubleshoot issues and

customize your models.

Communication with 3D Simulation Environment

When you use Vehicle Dynamics Blockset to run your algorithms, Simulink co-simulates the
algorithms in the visualization engine.

In the Simulink environment, Automated Driving Toolbox:

* Determines the next position of objects by using 3D visualization environment feedback and
vehicle dynamics models.

* Configures the 3D visualization environment, specifically:

* Ray tracing
* Scene capture cameras
+ Initial object positions

In the visualization engine environment, Vehicle Dynamics Blockset positions the objects and uses ray
tracing to query the environment.

The diagram summarizes the communication between Simulink and the visualization engine.

8-8
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« Determine positions of ] Translation, rotation, scale = Position objects in 3D
objects » environment
« Configure 3D environment J Scene information . Query 3D environment
Simulink Visualization
Engine

Block Execution Order

During simulation, the 3D simulation blocks follow a specific execution order:
1 The vehicle blocks initialize the vehicles and send their X, Y, and Yaw signal data to the
Simulation 3D Scene Configuration block.

2 The Simulation 3D Scene Configuration block receives the vehicle data and sends it to the sensor
blocks.

3 The sensor blocks receive the vehicle data and use it to accurately locate and visualize the
vehicles.
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The Priority property of the blocks controls this execution order. To access this property for any
block, right-click the block, select Properties, and click the General tab. By default, Simulation 3D
Vehicle with Ground Following blocks have a priority of -1, Simulation 3D Scene Configuration blocks
have a priority of 0, and sensor blocks have a priority of 1.

If your sensors are not detecting vehicles in the scene, it is possible that the 3D simulation blocks are
executing out of order. Try updating the execution order and simulating again. For more details on
execution order, see “Control and Display Execution Order”.

Also be sure that all 3D simulation blocks are located in the same subsystem. Even if the blocks have
the correct Priority settings, if they are located in different subsystems, they still might execute out
of order.

See Also

Related Examples

. “Send and Receive Double-Lane Change Scene Data” on page 3-71
More About

. “3D Visualization Engine Requirements and Limitations” on page 8-6
. “Scene Interrogation in 3D Environment” on page 3-15

External Websites
. Unreal Engine
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Place Cameras on Actors in the Unreal Editor

To visualize objects in an Unreal Editor scene, you can place cameras on static or custom actors in
the scene. To start, you need the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects
support package. See “Install Support Package and Configure Environment” on page 6-5.

To follow this workflow, you should be comfortable using Unreal Engine. Make sure that you have
Visual Studio 2017 or newer installed on your computer.

Place Camera on Static Actor

Follow these steps to place a Simulation 3D Camera Get block that is offset from a cone in the Unreal
Editor. Although this example uses the To Video Display block from the Computer Vision Toolbox™,
you can use your own block to display the image. Before you start, make sure you have installed the
Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package.

1 In a Simulink model, add the Simulation 3D Scene Configuration, Simulation 3D Camera Get, and
To Video Display blocks.

Simulation 3D Scene Configuration

To Vidao
Display

¥

Image Image

To Video Display

Simulation 30 Camera Get

Set these block parameters. In the Simulation 3D Scene Configuration block, select Open
Unreal Editor.

Block Parameter Settings
Simulation 3D Scene * Scene Source — Unreal Editor
Configuration + Project — Specify the path and name of the support

package project file. For example, C:\Local
\AutoVrtlEnv\AutoVrtlEnv.uproject
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Block Parameter Settings

Simulation 3D Camera Get Sensor identification — 1

* Vehicle name — Scene 0rigin

* Vehicle mounting location — Origin

* Specify offset — on

¢ Relative translation [X, Y, Z] — [-5, 0, 1]

This offsets the camera location from the cone mounting
location, 5 m behind, and 1 m up.

2 In the Unreal Editor, from the Modes tab, add a Sim 3D Scene Cap to the world, scene, or map.

4y Modes

3 In the Unreal Editor, from the Modes tab, add a Cone to the world, scene, or map.

Y Modes

‘ Cone

4 On the World Outliner tab, right-click the Sim3DSceneCap and attach it to the Cone.

= World Outliner,

Label

A28 HwStrght (Editor)

4w Mai
& Landscapel
'‘® StraightRoad
4§ Cone 5 feshActor
G 'y Sim3dSceneCapl Sim3dSceneCap
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5 On the Details tab, under Transform, add a location offset of -500,0, 100 in the X, Y, and Z
world coordinate system, respectively. This attaches the camera 500 cm behind the cone and 100
cm above it. The values match the Simulation 3D Camera Get block parameter Relative
translation [X, Y, Z] value.

12 actors (1 selected) @ View Options~

i Details

LM Sim3dSceneCapl

#+ Add Component - o BlueprintfAdd Script

Search Detab@nents

4 Transform
Location X m ¥ m 2
Rotaticn :{M‘fm.?_m

6

.
+ Add Component ~ &2 Blueprint/Add Script
Search Delmbtinents
Rendermg
Rephcation
InpLnt

4 Betof

7 Run the simulation.

a In the Simulink model, click Run.
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Because the source of the scenes is the project opened in the Unreal Editor, the simulation
does not start.

b  Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene
source to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the
scene.

This message confirms that Simulink has instantiated the vehicles and other assets in the
Unreal Engine 3D environment.

¢ Inthe Unreal Editor, click Play. The simulation runs in the scene currently open in the
Unreal Editor.

Observe the results in the To Video display window. The window displays the Simulation 3D
Camera Get image.

YT

Place Camera on Vehicle in Custom Project

Follow these steps to create a custom Unreal Engine project and place a camera on a vehicle in the
project. Although the example uses the To Video Display block from the Computer Vision Toolbox, you
can use your own block to display the image. Before you start, make sure you have installed the
Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package.

1 In a Simulink model, add the Simulation 3D Scene Configuration, Simulation 3D Camera Get, and
To Video Display blocks.
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Simulation 3D Scene Configuration

To Vidao
Display

¥

Image Image

To Video Display

Simulation 3D Camera Get

Save the model.

2 (Create a new project using the Vehicle Advanced template from the Epic Games Launcher by
Epic Games.

a Inthe Epic Games Launcher, launch Unreal Engine 4.23.

@ Epic Gamas o Library =

ENGINE VERSIONS @ 3

4.17.2
S

4.22.3

*  Unreal Engine

MY PROJECTS

For more information about the Epic Games Launcher, see Unreal Engine.

b  Select the New Project tab. On the Blueprint or C++ tab, select Vehicle Advanced. For
more information about the Epic Games Launcher, see Unreal Engine.
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Place Cameras on Actors in the Unreal Editor

1
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Crente Project

The Epic Games Launcher creates a new project and opens the Unreal Editor.
¢ Save the project. Close the Unreal Editor.

3 Open the Simulink model that you saved in step 1. Set these block parameters. In the Simulation
3D Scene Configuration block, select Open Unreal Editor.

Block Parameter Settings
Simulation 3D Scene * Scene Source — Unreal Editor
Configuration + Project — Specify the path an project that you saved in

step 2. For example, myProjectPath
\myProject.uproject

Simulation 3D Camera Get |* Sensor identification — 1
* Vehicle name — Scene 0rigin
* Vehicle mounting location — Origin

4 In the Simulation 3D Scene Configuration block, select Open Unreal Editor.
5 In the Unreal Editor, from the Modes tab, add a Sim 3D Camera to the world, scene, or map.
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;::;_,‘_1-,._’_,-3]

§ o . <

K Add New = = Save All

& MathWorkeSimulation C++ Clazses » MathWorksSimulation » Public »

6 On the vehicle VehicleBlueprint, drag and drop a camera. Choose a vehicle socket or bone to
attach the camera to.
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7  On the Details tab, tag the Sim3dCameral with the name Cameral.

¥ Defafle
LN sim3dCameral ™
+Add Component = &2 Blueprint/Add Script

Collizion

Lop

Cooking

8 Set the parent class.

a Under Blueprints, click Open Level Blueprint, and select Class Settings.
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b

In the Class Options, set Parent Class to Sim3dLevelScriptActor.

w »

4 Class Options

d | HEEEEEUTOE

4 Blueprint Options

9 Save the project.

10 Run the simulation.

In the Simulink model, click Run.

Because the source of the scenes is the project opened in the Unreal Editor, the simulation
does not start.

Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene
source to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the
scene.

This message confirms that Simulink has instantiated the vehicles and other assets in the
Unreal Engine 3D environment.

In the Unreal Editor, click Play. The simulation runs in the scene currently open in the
Unreal Editor.

Observe the results in the To Video display window.
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4 Ta Video Display
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See Also
Simulation 3D Camera Get | Simulation 3D Scene Configuration

More About

. “Animate Custom Actors in the Unreal Editor” on page 8-21
. “Get Started Communicating with the Unreal Engine Visualization Environment” on page 6-19

External Websites
. Unreal Engine
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Animate Custom Actors in the Unreal Editor

Animate Custom Actors in the Unreal Editor

Follow these steps to animate a custom actor in the Unreal Editor. Before you start, make sure you
that you have Visual Studio 2017 and the Vehicle Dynamics Blockset Interface for Unreal Engine 4
Projects support package installed on your machine. For more information, see “Install Support
Package and Configure Environment” on page 6-5.

Additionally, make sure that:

* You are comfortable coding with C++ in Unreal Engine.

* Your Unreal Editor C++ project contains a skeletal actor mesh. This example uses a bicycle mesh.

This examples provides the workflow for animating a bicycle actor. The general workflow is adapted
from the Unreal Engine Vehicle User Guide.

Set up Simulink Model

Step 1: Set up Simulink Model

Open a new Simulink model and add these blocks:

Two Ramp blocks

Constant block

Simulation 3D Actor Transform Set block
Simulation 3D Scene Configuration block
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Connect and name the blocks as shown.

'

_/’/ # Translation
Translation

_/’/ | Ralation
Rotation

|3=3) ] Scale

Scale

Simulation 30 Scene Configuratian

Simulafiaon 30 Acior Transfarm Set

Step 2: Configure Blocks

Configure blocks with these parameter settings.

Block Parameter Settings
Simulation 3D Scene * Scene source — Unreal Editor
Configuration + Project — Name and location of the installed support package

project file, for example, C:\Local\AutoVrtlEnv
\AutoVrtlEnv.uproject.

Scene view — Scene 0Origin

Simulation 3D Actor
Transform Set

Actor Setup tab:

+ Tag for actor in 3D scene, ActorTag — Bikel

Note This tag should match the Unreal Editor tag name in
“Step 6: Instantiate the Bicycle Actor” on page 8-36.

* Number of parts per actor to set, NumberOfParts — 3

Initial Values tab:

* [Initial array values to translate actor per part,
Translation — [0 0 0;0 0 0;0 0 O]

+ [Initial array values to rotate actor per part, Rotation —
[000;000;00 0]

* Initial array values to scale actor per part, Scale — [1 1
1;111;111]

Translation Ramp

Slope — [0.35 0 0;0 0 0;0 0 0]

Rotation Ramp

Slope — [0 0 0;0 -pi/5 0;0 -pi/5 0]

Scale Constant

Constantvalue — [1 1 1;1 1 1;1 1 1]
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Set up Unreal Editor to Animate Bicycle

Step 3: Set up Animation Instance

1 In your Simulink model, use the Simulation 3D Scene Configuration block Open Unreal Editor
parameter to open the Unreal Editor.

2 Select File > New C++ Class. In the Choose Parent Class dialog box, select Show All
Classes. Search for AnimInst. Add the AnimInstance parent class.

U

Choose Parent Class

Thiz will add a C++ header and source code file 1o your game project

Name AutoVrtlEny (Runtime) ~ [INEITENE

Choose Folder

/Source/AutoVrtlEnv/SimulinkBikeAniminst.cpp

In the Unreal Editor Message dialog box, click No to not open the Output Log.
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VEr You must
e ar in th
tomatically compile the "AutoVrtlEnv' module

Would you like to open the Output Log to see more daetails?

TS N

4 In Visual Studio 2017, open the C:\Local\AutoVrtlEnv\AutoVrtlEnv.sln file. Navigate to
the SimulinkBikeAnimInst.h and SimulinkBikeAnimInst.h source files.

Solution Explorer
@&~ | K]
Search Solution Explorer (Ctrl+;)

fa] Solution 'AutoVrtlEny' (2 projects)

4 & Engine
P[] UE4
4 Games

4 [%] AutoVrtlEnv
[ =B References
= External Dependencies

= o Config
4 ] Source
r AutoVrtlEny

™

c AutoVrtlEnv.Build.cs
Boow AutoVrtlEnv.cpp

[F] AutoVrtEnv.h

*+ SimulinkBikeAnimlnst.cpp
o [A SimulinkBike&nimlinst.h
o AutoVrtlEnv.Target.cs
c# AutoVrtlEnvEditor. Target.cs
O AutoVrtlEnv.uproject

Edit the files as shown.

Tip For this example, the code includes FWheelRotation and RWheelRotation properties to
animate the bicycle wheel rotation. You can add additional properties to animate other parts of

the bicycle.

Code: SimulinkBikeAnimInst.h

// Copyright 2019 The MathWorks, Inc.
#pragma once

#include "CoreMinimal.h"
#include "Animation/AnimInstance.h"
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#include "SimulinkBikeAnimInst.generated.h"
Vi
*

*/
UCLASS (transient, Blueprintable, hideCategories = AnimInstance, BlueprintType)
class AUTOVRTLENV API USimulinkBikeAnimInst : public UAnimInstance

GENERATED UCLASS BODY()
public:
UPROPERTY (EditAnywhere, BlueprintReadWrite, Category = WheelRotation)
float FWheelRotation;

UPROPERTY (EditAnywhere, BlueprintReadWrite, Category = WheelRotation)
float RWheelRotation;
+

Code: SimulinkBikeAnimInst. cpp

// Copyright 2019 The MathWorks, Inc.
#include "SimulinkBikeAnimInst.h"

USimulinkBikeAnimInst::USimulinkBikeAnimInst(const FObjectInitializer& ObjectInitializer)
: Super(ObjectInitializer) {
FWheelRotation 0.0f;
RWheelRotation 0.0f;

}
Close the Unreal Editor.

In Visual Studio, build the solution.

AutcVrtlEnv - Microsoft Visual Studio
Edit View Project | Build | Debug Team  Toels Test  Analyze
- © | @ -2 W f i Build Solution N

Step 4: Create Animation Blueprint

1

In your Simulink model, use the Simulation 3D Scene Configuration block Open Unreal Editor
parameter to open the Unreal Editor.

In the Unreal Editor, on the Content Browser tab, under View Options, select Show Engine
Content and Show Plugin Content.
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® Tiles
List
Columns

| Show Folders

Show Collections

Show Favorites

ow C++ Cl
Show Developers Content
/| Show Engine Content
/| Show Plugin Content

Show Localized Content

Thumbnail Edit Mode
¢ Real-Time Thumbnails

w View Options

3 Add the animation mesh. On the Content Browser tab, navigate to MathWorksSimulation
Content > Vehicles > Bicyclist > Meshes.
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== Content Browser,
Add New - X Import Save All

-
Ef Search Folders
TRl LW T LI T W DT IR C-II_)' L B L W | = = T Ll

mm MagicLeap Content
g MagicLeap C++ Classes
I gm MagicLeapMedia C++ Classes

4 g2 MathWorksSimulation Content
[ Il Characters

4 g Vehicles
S Enwch‘t

== Content Brows %ﬁ Blueprint Clz
I Add New ~
IJ‘ Level

Pl Cearch Folder J

-Ma'tthrku Material

X -r'.-1.:||l.-_' Rl o1
B Material
Bm Texture:  Artificial Intelligence === Animation Sharing Setup

In the Create Animation Blueprint dialog box, select:

* Parent Class: SimulinkBikeAnimInst
* Target Skeleton: SK Bicycle Skeleton
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P . v
U Create Animation Blueprint | ]

Parent Class:

SimulinkBikeAniminst X

X simulinkBikeAniminst

€ View Options~

Target Skeleton:

SK_Bicycle_Skeleton| XPp3
( None )

MName i Type

M SK_Bicycle_Skeleton :

1 item (1 sele « View Options~

Click OK.
6 Name the blueprint BikeAnimation. Right-click and select Save.

| & MathWorksSimulation Content » Vehicles » Bicyclist » Meshes »

T Filters « [EEEEiraR NIt

BikeAnimation (Animation Blueprint)

/MathWorksSimulationV

AutoVTtlEn
Class: AutoVrtEnv. SimulinkBikeAniminst

4 items |1 El':"ll':l.u:l.l_ll
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7 Open the BikeAnimation blueprint. Make the connections as shown.

——
.~ Make Rotator

Tranzform (Modify) Bone 4

Retun Value @
" @ Rotation

* Compone

B
Output Pose
o Alpha [10] -
Mesh Space Ref Pose
Component To Local

] * —lp aﬂﬁ:—'.-.]!l

nent Pose ,

Retum Value @ @ Rotation
] Compone

e Alpha [10

= Make Rotator

Make sure that you set:

* Bone to Modify to the correct bone
* Rotation Mode to Replace Existing
* Rotation Space to Bone Space
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(FTransform (Modity) Bone

@ Rotaban L Translation Mode

4 Rotation
/ s
“ranstorm (Wodfy) Bone
@ Rotaton

y Alpha [
4 Performance
LOD Threshald

4 plpha

Alpha Inpud Type

8 Compile and save the project.
Step 5: Create Bicycle Actor C++ Class

1 In the Unreal Editor, on the Content Browser tab, under View Options, select Show Engine
Content and Show Plugin Content.
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® Tiles

List

Columns

55 Names
Search Asset Path

| Search Collection Names

Thumbnail Edit Mode

| Real-Time Thumbnails

2 From the MathWorksSimulation C++ Classes folder, select Sim3dActor.
== Content Browser
I Add New ~ . Imp Save All & =& K& MathWorksSimulation C++ Classes » MathWorksSimulati

el sim x LRZICER M Soarch Public

" mm MathWorksSimulation Content

4 g MathWorksSimulation C++ Classes
4 =y MathWorksSimulation
5t

3dActor.h
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Right-click and select Create C++ class derived from Sim3dActor.

7 Edit

™ Show in Folder View

® show in Explorer

nce Viewer
Size Map

Audit As

4

Tip If you do not see the MathWorksSimulation C++ Classes folder, use these steps to check that
you have the MathWorksSimulation plugin installed and enabled:
a In the Unreal Editor toolbar, select Edit > Plugins.
In the Plugins window, verify that the MathWorks Interface plugin is listed in the installed
window. If the plugin is not already enabled, select the Enabled check box.
If you do not see the MathWorks Interface plugin in this window, repeat step 3 in
“Configure Environment” on page 6-5 and reopen the editor from Simulink.
¢ Close the editor and reopen it from Simulink.

3 Name the new Sim3dActor BicycleActor. Select Public. Click Create Class.

Name BicycleActor AutoVrtlEnv (Runtime) » Private

Path C:/LocalfAutoVritlEnv/Source/AutoVrtlEnv/Public/ Choose Folder

Header File c:/Local/AutovrilE e/AutoVrtlEnv/Public/BicycleActor.h

Source File C:/Local/AutoVrtlEnv/Source/AutoVrtiEnv/Private/BicycleActor.cpp

4 In Visual Studio, navigate to BicycleActor.h and BicycleActor.cpp.
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F Games
4 [%] AutoVrtlEnv
[ =B References
I+ g External Dependencies
o Config
4 ] Source
4 AutoVrtlEnv

™

4 .| Private

o BicycleActor.cpp

¥ Public

T

d Bicyclefctor.h

#z ABicyclefctor
# AutoVrtlEnv.Build.cs
B AutoVrtlEnv.cpp
AutoVrtEnv.h
B *+ SimulinkBikeAniminst.cpp
B [A SimulinkBike&niminst.h
o AutoVrtlEnv. Target.cs
i AutoVrtlEnvEditor. Target.cs
N AutoVrtlEnv.uproject

Edit the files as shown.

Tip For this example, the code includes logic to animate the bike body (BIKE BODY), front
wheel (FRONT_WHEEL), and rear wheel (REAR_WHEEL). You can add additional logic to animate
other parts of the bicycle.

Code: BicycleActor.h

// Copyright 2019 The MathWorks, Inc.
#pragma once

#include "CoreMinimal.h"
#include "Sim3dActor.h"
#include "BicycleActor.generated.h"

UCLASS()
class AUTOVRTLENV API ABicycleActor : public ASim3dActor

{
GENERATED_BODY ()

// Reference to animation blueprint and skeletal mesh
UClass* BicycleAnimation;
USkeletalMesh* BicycleMesh;

//Enum for parts that we want to control from simulink
enum {
BIKE BODY = 0,
FRONT WHEEL = 1,
REAR WHEEL =2,
NumberOfParts = 3
I
enum {
X
Y

0,
1,
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Z =2

+;

enum {
PITCH = 0,
ROLL = 1,
YAW = 2

+;

public:

//Containers to receive data from Simulink
float Translation[NumberOfParts][3];

float Rotation[NumberOfParts][3];

float Scale[NumberOfParts][3];

ABicycleActor();

//0verride functions for enabling Simulink to control this actor
virtual void Sim3dInit() override;

virtual void Sim3dSetup() override;

virtual void Sim3dStep(float DeltaSeconds) override;

virtual void Sim3dRelease() override;

//Some helper functions
void SetMesh(FString MeshRef);
void SetAnim(FString AnimRef);

//Function to update position/orientation of actor at each step
virtual void Transform();

// Returns Mesh subobject
class USkeletalMeshComponent* GetMesh() const;

//Reference to skeletal mesh component
UPROPERTY (Category = Bicyclist,
VisibleDefaultsOnly,
BlueprintReadOnly,
meta = (AllowPrivateAccess = "true"))
class USkeletalMeshComponent* Mesh;

protected:
virtual int GetNumberOfParts() { return (NumberOfParts); }

};

// Returns Mesh subobject

FORCEINLINE USkeletalMeshComponent* ABicycleActor::GetMesh() const {
return Mesh;

}

Code: BicycleActor.cpp

// Copyright 2019 The MathWorks, Inc.
#include "BicycleActor.h"

#include "SimulinkBikeAnimInst.h"
#include "AutoVrtlEnv.h"

#include "Math/UnrealMathUtility.h"

ABicycleActor: :ABicycleActor() {

//Create mesh component
Mesh = CreateOptionalDefaultSubobject<USkeletalMeshComponent>(TEXT("ABicycleMesh"));
RootComponent = Mesh;

}

void ABicycleActor::Sim3dInit() {
Super: :Sim3dInit();

}

void ABicycleActor::Sim3dSetup() {
SetMesh(TEXT("/MathWorksSimulation/Vehicles/Bicyclist/Meshes/SK Bicycle"));
SetAnim(TEXT("/MathWorksSimulation/Vehicles/Bicyclist/Meshes/BikeAnimation.BikeAnimation C"));
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GetMesh()->SetSkeletalMesh(BicycleMesh);
GetMesh()->SetAnimationMode (EAnimationMode: :AnimationBlueprint);
GetMesh()->SetAnimInstanceClass(BicycleAnimation);

Transform();

}

void ABicycleActor::Sim3dStep(float DeltaTime) {
Transform();
}

void ABicycleActor::Sim3dRelease() {
Super::Sim3dRelease();
}

void ABicycleActor::Transform() {
//Initialize
int status = 0;
FVector ActorLocation;
FRotator ActorRotation;
FVector ActorScale;
USimulinkBikeAnimInst* Animation = NULL;
Animation = Cast<USimulinkBikeAnimInst>(GetMesh()->GetAnimInstance());

//Read data from simulink
status = ReadSimulation3DActorTransform(readerTransform, Translation, Rotation, Scale);

//Set bicycle position and orientation

ActorLocation.Set(Translation[BIKE BODY][X], Translation[BIKE BODY][Y], Translation[BIKE BODY][Z]);
ActorRotation.Pitch = Rotation[BIKE BODY][PITCH];

ActorRotation.Roll = Rotation[BIKE BODY][ROLL];

ActorRotation.Yaw = Rotation[BIKE BODY][YAW];

//Unit conversion from simulink to UE, meteres to cm and radians to degrees
ActorLocation = ActorLocation * 100.0f;

ActorRotation = FMath::RadiansToDegrees(ActorRotation);
ActorScale.Set(Scale[BIKE BODY][X], Scale[BIKE BODY][Y], Scale[BIKE BODY][Z]);

SetActorLocation(ActorLocation);
SetActorRotation(ActorRotation);
SetActorScale3D(ActorScale);

//Set properies in animation blueprint
Animation->FWheelRotation = FMath::RadiansToDegrees(Rotation[FRONT WHEEL][ROLL]);
Animation->RWheelRotation = FMath::RadiansToDegrees(Rotation[REAR WHEEL][ROLL]);

//Unit conversion from UE to simulink

ActorLocation = GetActorLocation();

ActorLocation = ActorlLocation * .01f; // cm ->m
ActorRotation = GetActorRotation();

ActorRotation = FMath::DegreesToRadians(ActorRotation);
ActorScale = GetActorScale3D();

Translation[BIKE BODY][X] = ActorLocation.X;
Translation[BIKE BODY][Y] = ActorLocation.Y;
Translation[BIKE BODY][Z] = ActorlLocation.Z;
Rotation[BIKE BODY][X] = ActorRotation.Pitch;
Rotation[BIKE BODY][Y] = ActorRotation.Roll;
Rotation[BIKE BODY][Z] = ActorRotation.Yaw;

Scale[BIKE BODY][X] = ActorScale.X;

Scale[BIKE BODY][Y] = ActorScale.Y;

Scale[BIKE BODY][Z] = ActorScale.Z;

Translation[FRONT WHEEL][X] = 0.0f;
Translation[FRONT WHEEL][Y] = 0.0f;
Translation[FRONT WHEEL][Z] = 0.0f;
Translation[REAR WHEEL][X] = 0.0f;
Translation[REAR WHEEL][Y] = 0.0f;
Translation[REAR WHEEL][Z] = 0.0f;

Rotation[FRONT WHEEL][PITCH] = 0.0f;

Rotation[FRONT WHEEL][ROLL] = FMath::DegreesToRadians(Animation->FWheelRotation);
Rotation[FRONT WHEEL][YAW] = 0.0f;

Rotation[REAR WHEEL][PITCH] = 0.0f;
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Rotation[REAR WHEEL][ROLL] = FMath::DegreesToRadians(Animation->RWheelRotation);
Rotation[REAR WHEEL][YAW] = 0.0f;

Scale
Scale
Scale
Scale
Scale
Scale

FRONT_WHEEL] [X]
FRONT_WHEEL][Y]
FRONT_WHEEL][Z]
REAR_WHEEL] [X]
REAR_WHEEL][Y]
REAR_WHEEL][Z]

1.0f;

1.0f;

1.0f;
1.0f;
1.0f;
1.0f;

//Write data back to simulink
WriteSimulation3DActorTransform(writerTransform, Translation, Rotation, Scale);

}
void ABicycleActor::SetMesh(FString MeshPath) {
BicycleMesh =
Cast<USkeletalMesh>(StaticLoadObject (USkeletalMesh::StaticClass(), NULL, *MeshPath));
}

void ABicycleActor::SetAnim(FString AnimPath) {
BicycleAnimation = StaticLoadClass(USimulinkBikeAnimInst::StaticClass(), NULL, *AnimPath);
}

Close the Unreal Editor.
Save the project and build the solution.

AuteVrtlEnv - Microsoft Visual Studio
Edit View Project | Build | Debug Team  Toocls Test  Analyze

- | #3 - 2 W N ¥ Build Solution N

Step 6: Instantiate the Bicycle Actor

1 Inyour Simulink model, use the Simulation 3D Scene Configuration block Open Unreal Editor
parameter to open the Unreal Editor.

2 Place the Bicycle Actor in the scene.

s Modes o |
| =8 - &
""'l-.' A r I . L} ] -
q & - | 2| | sa nt 5 Content Marketplace Settings Blueprints

B lewoan

DICyCle X

. Bicycle Actor

3 Set the tag to the same value as the Simulation 3D Actor Transform Set block Tag for actor in
3D scene, ActorTag. For this example, set the value to Bikel.
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= World Outliner

Label

BicycleActor
o Ve

i Details ® World Settings

.
4+ Add Companent ~

Search Components

BicycleActor] (Instance)

1 Array elements =+ ﬂ L~

m - B

Set up Camera View (Optional)

Optionally, set up a camera view to override the default view. You can use either Simulink or a level
blueprint to set up the camera view. For the recommended option, use Simulink.

Step 7: Use Simulink (Recommended)
To setup a camera view that follows along with the bicycle:
1  Add these blocks to the model.

* One Ramp block
* One Add block
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* Three Constant blocks

* Simulation 3D Actor Transform Set block

Connect and name the blocks as shown.

[0 -5.1 0.56]

CamRamp_|—’ +

=+

CamTranslation

W Translation

[0 0 deg2rad(85)]

CamRotation

P Ratation

[1 1 1]

- M Scale

CamScale

2 Set these block parameters.

Simulation 3D Actor Transform Sel: Camera Control

Block

Parameter Settings

Simulation 3D Actor

Transform Set: Camera

* Tag for actor in 3D scene, ActorTag — MainCameral

Control
CamTranslation * Constant value — [0 -5.1 0.56]

* Interpret vector parameters as 1-D — off
CamRotation * Constant value — [0 0 deg2rad(85)]

¢ Interpret vector parameters as 1-D — off
CamScale * Constant value — [1 1 1]

* Interpret vector parameters as 1-D — off

Step 7: Use Level Blueprint

To override the default camera view:

1 Add a camera actor. Assign it as a child of the BicycleActor.

2 Use the Transform settings to specify the location and viewing angle.
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40w Main Scene

12 actors (1 selected)

1 [etails ® World sett
b
4 Add Component = o Blueprint/Add Script

search Components

w7 CameraActor(instance)

4 & SceneComponent (Inhenited)
%y CameraComponent (Inhented)

Search Detalls

4 Transform

Location «

4 Camera Settings

= an Mode Perspective

Open the level blueprint.
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{nrl

Yy -

Cinematics

== T

4 In the level blueprint, make these connections. If you right-click on the Event Graph to find
nodes, clear Context Sensitive. If you have a CameraActor, you can drag it to the Event Graph
from the World Outliner view in the editor.

f Delay o

» completed [P

O» Duration 0.0 - s
g UENON 100 f Set View Target with Blend
> Event BeginPlay Target syer Cont
. o o ol .
g Target
[ Get Player Controller -
; New View Target
» Player Index | g | Return Value £
] C» Blend Time [0.0]

Blend Func
VTBlend Linear

» Blend Exp [0.0]

Lock Outgoing D

f % CameraActor

5 Save the project. Close the Unreal Editor.

Run Simulation

After you configure the Simulink model and Unreal Editor environment, run a simulation.

8-40



Animate Custom Actors in the Unreal Editor

In your Simulink model, make sure that you have set the Simulation 3D Scene Configuration
parameters to these values:
* Scene source — Unreal Editor

* Project — Name and location of the installed support package project file, for example,
C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject.

* Scene view — Scene 0Origin

Use the Simulation 3D Scene Configuration block Open Unreal Editor parameter to open the
Unreal Editor.

Run the simulation.

a In the Simulink model, click Run.
Because the source of the scenes is the project opened in the Unreal Editor, the simulation
does not start.

b  Verify that the Diagnostic Viewer window in Simulink displays this message:
In the Simulation 3D Scene Configuration block, you set the scene

source to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the
scene.

This message confirms that Simulink has instantiated the vehicles and other assets in the
Unreal Engine 3D environment.

¢ Inthe Unreal Editor, click Play. The simulation runs in the scene currently open in the
Unreal Editor.

See Also
Simulation 3D Actor Transform Set | Simulation 3D Scene Configuration

More About

“Get Started Communicating with the Unreal Engine Visualization Environment” on page 6-19
“Place Cameras on Actors in the Unreal Editor” on page 8-10

External Websites

Unreal Engine
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